Deep Graph-Convolutional Generative Adversarial Network for Semi-Supervised Learning on Graphs

计算机科学 稳健性(进化) 图形 卷积神经网络 人工智能 生成对抗网络 生成语法 深度学习 对抗制 特征学习 特征工程 模式识别(心理学) 机器学习 理论计算机科学 数据挖掘 基因 生物化学 化学
作者
Nan Jia,Xiaolin Tian,Wenxing Gao,Licheng Jiao
出处
期刊:Remote Sensing [MDPI AG]
卷期号:15 (12): 3172-3172 被引量:5
标识
DOI:10.3390/rs15123172
摘要

Graph convolutional networks (GCNs) are neural network frameworks for machine learning on graphs. They can simultaneously perform end-to-end learning on the attribute information and the structure information of graph data. However, most existing GCNs inevitably encounter the limitations of non-robustness and low classification accuracy when labeled nodes are scarce. To address the two issues, the deep graph convolutional generative adversarial network (DGCGAN), a model combining GCN and deep convolutional generative adversarial networks (DCGAN), is proposed in this paper. First, the graph data is mapped to a highly nonlinear space by using the topology and attribute information of the graph for symmetric normalized Laplacian transform. Then, through the feature-structured enhanced module, the node features are expanded into regular structured data, such as images and sequences, which are input to DGCGAN as positive samples, thus expanding the sample capacity. In addition, the feature-enhanced (FE) module is adopted to enhance the typicality and discriminability of node features, and to obtain richer and more representative features, which is helpful for facilitating accurate classification. Finally, additional constraints are added to the network model by introducing DCGAN, thus enhancing the robustness of the model. Through extensive empirical studies on several standard benchmarks, we find that DGCGAN outperforms state-of-the-art baselines on semi-supervised node classification and remote sensing image classification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
一蓑烟雨任平生应助pbj采纳,获得10
3秒前
Lyn应助pbj采纳,获得10
3秒前
4秒前
5秒前
慕青应助听话的梦之采纳,获得10
5秒前
5秒前
ken发布了新的文献求助10
5秒前
小明发布了新的文献求助10
6秒前
空曲发布了新的文献求助10
6秒前
6秒前
失眠觅云发布了新的文献求助10
7秒前
8秒前
JamesPei应助小小怪兽采纳,获得10
9秒前
9秒前
LUMEN完成签到,获得积分10
9秒前
JamesPei应助认真一斩采纳,获得30
9秒前
开朗寇发布了新的文献求助10
10秒前
小罗完成签到,获得积分10
10秒前
端庄擎汉发布了新的文献求助10
10秒前
10秒前
10秒前
完美世界应助情木花肆采纳,获得10
11秒前
LUMEN发布了新的文献求助20
13秒前
kanuary完成签到,获得积分20
14秒前
14秒前
15秒前
重要的诗珊完成签到 ,获得积分10
15秒前
16秒前
16秒前
wang发布了新的文献求助10
16秒前
17秒前
17秒前
19秒前
阳pipi发布了新的文献求助10
20秒前
20秒前
Morgans00完成签到,获得积分10
20秒前
listener应助按揭采纳,获得10
20秒前
称心如意发布了新的文献求助10
22秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Cognitive Paradigms in Knowledge Organisation 1000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3306956
求助须知:如何正确求助?哪些是违规求助? 2940786
关于积分的说明 8498612
捐赠科研通 2614927
什么是DOI,文献DOI怎么找? 1428599
科研通“疑难数据库(出版商)”最低求助积分说明 663447
邀请新用户注册赠送积分活动 648297