Pixel-Wise Gamma Correction Mapping for Low-Light Image Enhancement

像素 计算机科学 人工智能 卷积神经网络 伽马校正 图像质量 计算机视觉 集合(抽象数据类型) 迭代重建 图像(数学) 深度学习 模式识别(心理学) 程序设计语言
作者
Xiangsheng Li,Manlu Liu,Qiang Ling
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:34 (2): 681-694 被引量:2
标识
DOI:10.1109/tcsvt.2023.3286802
摘要

Low-light image enhancement aims to improve the visual quality of images captured under poor illumination and has caught much attention these years. However, existing low-light enhancement methods encounter many problems, e.g., they may not be robust to diverse low-light conditions or have to sacrifice computational efficiency for enhancement performance, which hinder their practical applications. To solve these problems, this paper proposes a novel enhancement method, called Pixel-Wise Gamma Correction Mapping (PWGCM), which combines our innovative pixel-wise Gamma Correction (GC) and deep learning. Compared with conventional GC, our pixel-wise GC is characterized by a set of gamma correction maps, which have the same size as the input image and are taken to replace the single global GC parameter of conventional GC. These gamma correction maps are generated from the low-light image input by a lightweight convolutional neural network at low computational cost. New no-reference loss functions are provided to train the network, ensuring reliable unsupervised learning. Furthermore, our PWGCM is enhanced by an iterative strategy, under which the low-light input image is iteratively enhanced based on the generated gamma correction maps and can yield visually pleasant results. Extensive experiments are done to compare our PWGCM with several state-of-the-art methods in terms of visual quality, efficiency, and auxiliary effects on high-level tasks. The comparison results confirm the superiority of our PWGCM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zzzzz完成签到,获得积分10
刚刚
1秒前
1秒前
1秒前
薛梦希完成签到,获得积分10
1秒前
SciGPT应助reck采纳,获得20
1秒前
2秒前
2秒前
啦啦啦发布了新的文献求助10
2秒前
3秒前
nan完成签到,获得积分10
3秒前
lucky完成签到,获得积分10
4秒前
匆匆完成签到,获得积分10
4秒前
云馨完成签到 ,获得积分10
4秒前
5秒前
5秒前
6秒前
6秒前
涂惠芳发布了新的文献求助30
6秒前
花开hhhhhhh发布了新的文献求助10
6秒前
天将明发布了新的文献求助30
6秒前
小蘑菇应助冰勾板勾采纳,获得10
7秒前
Owen应助lucky采纳,获得10
8秒前
8秒前
8秒前
nieinei完成签到 ,获得积分10
8秒前
9秒前
咔酱完成签到,获得积分10
9秒前
9秒前
爱静静应助Dagong-xz采纳,获得10
10秒前
rain2017发布了新的文献求助10
10秒前
科研通AI5应助竹竹采纳,获得10
11秒前
11秒前
酷波er应助越幸运采纳,获得10
12秒前
Wangyan完成签到,获得积分10
12秒前
Moihan完成签到,获得积分10
12秒前
12秒前
啦啦啦完成签到,获得积分10
12秒前
12秒前
13秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Covalent Organic Frameworks 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3479035
求助须知:如何正确求助?哪些是违规求助? 3069819
关于积分的说明 9115453
捐赠科研通 2761613
什么是DOI,文献DOI怎么找? 1515399
邀请新用户注册赠送积分活动 700890
科研通“疑难数据库(出版商)”最低求助积分说明 699911