Pixel-Wise Gamma Correction Mapping for Low-Light Image Enhancement

像素 计算机科学 人工智能 卷积神经网络 伽马校正 图像质量 计算机视觉 集合(抽象数据类型) 迭代重建 图像(数学) 深度学习 模式识别(心理学) 程序设计语言
作者
Xiangsheng Li,Manlu Liu,Qiang Ling
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:34 (2): 681-694 被引量:2
标识
DOI:10.1109/tcsvt.2023.3286802
摘要

Low-light image enhancement aims to improve the visual quality of images captured under poor illumination and has caught much attention these years. However, existing low-light enhancement methods encounter many problems, e.g., they may not be robust to diverse low-light conditions or have to sacrifice computational efficiency for enhancement performance, which hinder their practical applications. To solve these problems, this paper proposes a novel enhancement method, called Pixel-Wise Gamma Correction Mapping (PWGCM), which combines our innovative pixel-wise Gamma Correction (GC) and deep learning. Compared with conventional GC, our pixel-wise GC is characterized by a set of gamma correction maps, which have the same size as the input image and are taken to replace the single global GC parameter of conventional GC. These gamma correction maps are generated from the low-light image input by a lightweight convolutional neural network at low computational cost. New no-reference loss functions are provided to train the network, ensuring reliable unsupervised learning. Furthermore, our PWGCM is enhanced by an iterative strategy, under which the low-light input image is iteratively enhanced based on the generated gamma correction maps and can yield visually pleasant results. Extensive experiments are done to compare our PWGCM with several state-of-the-art methods in terms of visual quality, efficiency, and auxiliary effects on high-level tasks. The comparison results confirm the superiority of our PWGCM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Watson完成签到,获得积分10
刚刚
刚刚
KX2024完成签到,获得积分10
刚刚
优美的明辉完成签到,获得积分10
1秒前
桃桃甜筒完成签到,获得积分10
1秒前
凡而不庸完成签到,获得积分10
1秒前
boom完成签到,获得积分10
1秒前
轻松元绿完成签到 ,获得积分10
1秒前
蓝桉发布了新的文献求助30
1秒前
木冉完成签到,获得积分10
2秒前
kingwill举报比巴卜求助涉嫌违规
2秒前
more完成签到,获得积分20
3秒前
3秒前
FOOL完成签到,获得积分10
3秒前
onw完成签到,获得积分10
3秒前
糖糖糖唐完成签到,获得积分10
3秒前
营养小杨应助春分夏至采纳,获得10
4秒前
4秒前
寻炉乡发布了新的文献求助10
4秒前
赘婿应助顺利毕业采纳,获得10
4秒前
BlingBling完成签到,获得积分10
4秒前
可乐加冰完成签到,获得积分10
5秒前
黎明完成签到,获得积分20
5秒前
迷你的夜天完成签到 ,获得积分10
5秒前
yin完成签到,获得积分10
5秒前
高高问夏完成签到,获得积分10
5秒前
圣人海完成签到,获得积分10
5秒前
dery完成签到,获得积分10
6秒前
ccc应助清新的衬衫采纳,获得10
7秒前
科研通AI2S应助优美的明辉采纳,获得10
7秒前
李繁蕊完成签到,获得积分10
7秒前
不期完成签到,获得积分10
7秒前
赫连砖家发布了新的文献求助10
8秒前
曙光完成签到,获得积分10
8秒前
太阳发布了新的文献求助10
8秒前
马铃薯完成签到,获得积分10
8秒前
zhl完成签到,获得积分10
9秒前
9秒前
9秒前
88完成签到 ,获得积分10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
白土三平研究 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3555970
求助须知:如何正确求助?哪些是违规求助? 3131555
关于积分的说明 9391776
捐赠科研通 2831407
什么是DOI,文献DOI怎么找? 1556440
邀请新用户注册赠送积分活动 726584
科研通“疑难数据库(出版商)”最低求助积分说明 715890