Digital twin-enabled adaptive scheduling strategy based on deep reinforcement learning

计算机科学 强化学习 动态优先级调度 两级调度 公平份额计划 单调速率调度 分布式计算 调度(生产过程) 循环调度 作业车间调度 固定优先级先发制人调度 抽奖日程安排 人工智能 数学优化 计算机网络 数学 服务质量 布线(电子设计自动化)
作者
Xuemei Gan,Ying Zuo,Ansi Zhang,Shaobo Li,Fei Tao
出处
期刊:Science China-technological Sciences [Springer Science+Business Media]
卷期号:66 (7): 1937-1951
标识
DOI:10.1007/s11431-022-2413-5
摘要

The modern complicated manufacturing industry and smart manufacturing tendency have imposed new requirements on the scheduling method, such as self-regulation and self-learning capabilities. While traditional scheduling methods cannot meet these needs due to their rigidity. Self-learning is an inherent ability of reinforcement learning (RL) algorithm inhered from its continuous learning and trial-and-error characteristics. Self-regulation of scheduling could be enabled by the emerging digital twin (DT) technology because of its virtual-real mapping and mutual control characteristics. This paper proposed a DT-enabled adaptive scheduling based on the improved proximal policy optimization RL algorithm, which was called explicit exploration and asynchronous update proximal policy optimization algorithm (E2APPO). Firstly, the DT-enabled scheduling system framework was designed to enhance the interaction between the virtual and the physical job shops, strengthening the self-regulation of the scheduling model. Secondly, an innovative action selection strategy and an asynchronous update mechanism were proposed to improve the optimization algorithm to strengthen the self-learning ability of the scheduling model. Lastly, the proposed scheduling model was extensively tested in comparison with heuristic and meta-heuristic algorithms, such as well-known scheduling rules and genetic algorithms, as well as other existing scheduling methods based on reinforcement learning. The comparisons have proved both the effectiveness and advancement of the proposed DT-enabled adaptive scheduling strategy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李太宇发布了新的文献求助10
1秒前
4秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
西伯利亚老母猪完成签到,获得积分10
5秒前
6秒前
完美世界应助尊敬乌龟采纳,获得10
6秒前
福福yu完成签到,获得积分10
6秒前
6秒前
Owen应助大狒狒采纳,获得10
7秒前
DS发布了新的文献求助200
9秒前
贪玩绮南完成签到 ,获得积分10
9秒前
充电宝应助上杉绘梨衣采纳,获得10
9秒前
bkagyin应助shenlee采纳,获得10
9秒前
背后翠梅发布了新的文献求助10
10秒前
小沐牧呀发布了新的文献求助10
10秒前
紫虚门下小肥羊完成签到 ,获得积分10
10秒前
大个应助jml采纳,获得10
12秒前
咖可乐完成签到,获得积分10
14秒前
泡泡糖完成签到,获得积分10
15秒前
浮游应助风清扬采纳,获得30
15秒前
17秒前
17秒前
所所应助背后翠梅采纳,获得10
17秒前
zcl应助Tree_QD采纳,获得30
18秒前
19秒前
美丽电源应助owoow采纳,获得10
20秒前
乐乐应助STP顶峰相见采纳,获得10
20秒前
23秒前
Amy发布了新的文献求助10
24秒前
CHENJIRU发布了新的文献求助10
24秒前
25秒前
冰阔落完成签到 ,获得积分10
26秒前
26秒前
Emma发布了新的文献求助10
27秒前
Passskd发布了新的文献求助10
29秒前
科研通AI6应助13508104971采纳,获得10
29秒前
30秒前
华仔应助小王同学采纳,获得10
31秒前
Rainielove0215完成签到,获得积分0
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
TOWARD A HISTORY OF THE PALEOZOIC ASTEROIDEA (ECHINODERMATA) 1500
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
AASHTO LRFD Bridge Design Specifications (10th Edition) with 2025 Errata 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5123780
求助须知:如何正确求助?哪些是违规求助? 4328150
关于积分的说明 13486520
捐赠科研通 4162505
什么是DOI,文献DOI怎么找? 2281552
邀请新用户注册赠送积分活动 1282938
关于科研通互助平台的介绍 1222044