Digital twin-enabled adaptive scheduling strategy based on deep reinforcement learning

计算机科学 强化学习 动态优先级调度 两级调度 公平份额计划 单调速率调度 分布式计算 调度(生产过程) 循环调度 作业车间调度 固定优先级先发制人调度 抽奖日程安排 人工智能 数学优化 计算机网络 数学 服务质量 布线(电子设计自动化)
作者
Xuemei Gan,Ying Zuo,Ansi Zhang,Shaobo Li,Fei Tao
出处
期刊:Science China-technological Sciences [Springer Science+Business Media]
卷期号:66 (7): 1937-1951
标识
DOI:10.1007/s11431-022-2413-5
摘要

The modern complicated manufacturing industry and smart manufacturing tendency have imposed new requirements on the scheduling method, such as self-regulation and self-learning capabilities. While traditional scheduling methods cannot meet these needs due to their rigidity. Self-learning is an inherent ability of reinforcement learning (RL) algorithm inhered from its continuous learning and trial-and-error characteristics. Self-regulation of scheduling could be enabled by the emerging digital twin (DT) technology because of its virtual-real mapping and mutual control characteristics. This paper proposed a DT-enabled adaptive scheduling based on the improved proximal policy optimization RL algorithm, which was called explicit exploration and asynchronous update proximal policy optimization algorithm (E2APPO). Firstly, the DT-enabled scheduling system framework was designed to enhance the interaction between the virtual and the physical job shops, strengthening the self-regulation of the scheduling model. Secondly, an innovative action selection strategy and an asynchronous update mechanism were proposed to improve the optimization algorithm to strengthen the self-learning ability of the scheduling model. Lastly, the proposed scheduling model was extensively tested in comparison with heuristic and meta-heuristic algorithms, such as well-known scheduling rules and genetic algorithms, as well as other existing scheduling methods based on reinforcement learning. The comparisons have proved both the effectiveness and advancement of the proposed DT-enabled adaptive scheduling strategy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
席红旗完成签到,获得积分10
1秒前
Akim应助老黑采纳,获得10
3秒前
4秒前
Hh发布了新的文献求助10
4秒前
王大壮完成签到,获得积分10
6秒前
大模型应助王359采纳,获得10
6秒前
8秒前
Hh完成签到,获得积分10
9秒前
壮观缘分完成签到,获得积分10
10秒前
科研通AI5应助小小怪采纳,获得10
13秒前
011_wasd发布了新的文献求助10
14秒前
Yange发布了新的文献求助20
14秒前
刁刁完成签到,获得积分20
15秒前
16秒前
17秒前
无奈的如柏完成签到,获得积分20
17秒前
jjx1005完成签到 ,获得积分10
18秒前
只要平凡发布了新的文献求助10
18秒前
19秒前
刁刁发布了新的文献求助10
20秒前
飞上天的皮蛋完成签到,获得积分10
22秒前
zho应助WDWK采纳,获得10
25秒前
25秒前
稳重的悟空完成签到 ,获得积分10
27秒前
jiangxiaoyu完成签到 ,获得积分10
29秒前
骅骝发布了新的文献求助10
30秒前
31秒前
32秒前
32秒前
鬼小妞nice完成签到 ,获得积分10
33秒前
受伤芝麻完成签到,获得积分10
34秒前
任性迎南发布了新的文献求助10
36秒前
王青文完成签到,获得积分10
36秒前
受伤芝麻发布了新的文献求助10
36秒前
天边发布了新的文献求助10
38秒前
40秒前
42秒前
科研通AI5应助六七十三采纳,获得10
42秒前
44秒前
44秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993971
求助须知:如何正确求助?哪些是违规求助? 3534571
关于积分的说明 11265961
捐赠科研通 3274483
什么是DOI,文献DOI怎么找? 1806363
邀请新用户注册赠送积分活动 883224
科研通“疑难数据库(出版商)”最低求助积分说明 809712