Designing multi-target drugs for the treatment of major depressive disorder

重性抑郁障碍 虚拟筛选 医学 神经科学 生物信息学 药物发现 心理学 生物 认知
作者
Amit Kumar Halder,Soumya Mitra,M. Natália D. S. Cordeiro
出处
期刊:Expert Opinion on Drug Discovery [Informa]
卷期号:18 (6): 643-658 被引量:3
标识
DOI:10.1080/17460441.2023.2214361
摘要

Major depressive disorders (MDD) pose major health burdens globally. Currently available medications have their limitations due to serious adverse effects, long latency periods as well as resistance. Considering the highly complicated pathological nature of this disorder, it has been suggested that multitarget drugs or multi-target-directed ligands (MTDLs) may provide long-term therapeutic solutions for the treatment of MDD.In the current review, recent lead design and lead modification strategies have been covered. Important investigations reported in the last ten years (2013-2022) for the preclinical development of MTDLs (through synthetic medicinal chemistry and biological evaluation) for the treatment of MDD were discussed as case studies to focus on the recent design strategies. The discussions are categorized on the basis of pharmacological targets. Based on these important case studies, the challenges involved in different design strategies were discussed in detail.Even though large variations were observed in the selection of pharmacological targets, some potential biological targets (NMDA, melatonin receptors) are required to be explored extensively for the design of MTDLs. Similarly, apart from structure activity relationship (SAR), in silico techniques such as multitasking cheminformatic modeling, molecular dynamics simulation and virtual screening should be exploited to a greater extent.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Rinsana完成签到,获得积分10
刚刚
hy发布了新的文献求助10
刚刚
付海燕发布了新的文献求助30
2秒前
灵巧的导师完成签到,获得积分10
4秒前
领导范儿应助hy采纳,获得10
4秒前
冷酷芝完成签到,获得积分10
6秒前
彭于晏应助凌晨五点的采纳,获得10
6秒前
舒适的亦瑶完成签到,获得积分10
6秒前
在水一方应助clearlove采纳,获得10
7秒前
8秒前
hexiqin发布了新的文献求助10
9秒前
静静完成签到 ,获得积分10
10秒前
ziyuwang发布了新的文献求助10
12秒前
12秒前
12秒前
sam完成签到 ,获得积分10
13秒前
萤火虫完成签到,获得积分10
17秒前
邱旭发布了新的文献求助10
18秒前
23完成签到,获得积分10
20秒前
叶子完成签到,获得积分10
22秒前
bb关注了科研通微信公众号
23秒前
CC完成签到,获得积分10
23秒前
Hello应助自信南霜采纳,获得10
24秒前
26秒前
YJY完成签到 ,获得积分10
26秒前
moonlight发布了新的文献求助10
30秒前
kx完成签到,获得积分10
32秒前
鲤角兽完成签到,获得积分10
34秒前
SciGPT应助科研通管家采纳,获得10
34秒前
34秒前
34秒前
weiwei完成签到,获得积分10
34秒前
晚亭完成签到,获得积分10
35秒前
Whiaper完成签到,获得积分10
35秒前
苏靖完成签到,获得积分10
35秒前
科研通AI2S应助xhaocheng采纳,获得10
36秒前
37秒前
飘逸颖发布了新的文献求助20
38秒前
40秒前
晚亭发布了新的文献求助10
40秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Data Structures and Algorithms in Java: A Project-Based Approach 1000
The Healthy Socialist Life in Maoist China 600
The Vladimirov Diaries [by Peter Vladimirov] 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3269378
求助须知:如何正确求助?哪些是违规求助? 2908885
关于积分的说明 8347242
捐赠科研通 2579108
什么是DOI,文献DOI怎么找? 1402632
科研通“疑难数据库(出版商)”最低求助积分说明 655470
邀请新用户注册赠送积分活动 634669