HWMWOA: A Hybrid WMA–WOA Algorithm with Adaptive Cauchy Mutation for Global Optimization and Data Classification

计算机科学 柯西分布 元启发式 算法 数学优化 元优化 进化算法 人工智能 数学 统计
作者
Jiali Zhang,Haichan Li,Morteza Karimzadeh Parizi
出处
期刊:International Journal of Information Technology and Decision Making [World Scientific]
卷期号:22 (04): 1195-1252 被引量:15
标识
DOI:10.1142/s0219622022500675
摘要

Combinatorial metaheuristic optimization algorithms have newly become a remarkable domain for handling real-world and engineering design optimization problems. In this paper, the Whale Optimization Algorithm (WOA) and the Woodpecker Mating Algorithm (WMA) are combined as HWMWOA. WOA is an effective algorithm with the advantage of global searching ability, where the control parameters are very less. But WOA is more probable to get trapped in the local optimum points and miss diversity of population, therefore suffering from premature convergence. The fundamental goal of the HWMWOA algorithm is to overcome the drawbacks of WOA. This betterment includes three basic mechanisms. First, a modified position update equation of WMA by efficient exploration ability is embedded into HWMWOA. Second, a new self-regulation Cauchy mutation operator is allocated to the proposed hybrid method. Finally, an arithmetic spiral movement with a novel search guide pattern is used in the suggested HWMWOA algorithm. The efficiency of the suggested algorithm is appraised over 48 test functions, and the optimal outcomes are compared with 15 most popular and newest metaheuristic optimization algorithms. Moreover, the HWMWOA algorithm is applied for simultaneously optimizing the parameters of SVM (Support Vector Machine) and feature weighting to handle the data classification problem on several real-world datasets from the UCI database. The outcomes prove the superiority of the suggested hybrid algorithm compared to both WOA and WMA. In addition, the results represent that the HWMWOA algorithm outperforms other efficient techniques impressively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
guojd完成签到,获得积分10
刚刚
Pericardium关注了科研通微信公众号
2秒前
所所应助今夜无人入眠采纳,获得10
2秒前
2秒前
3秒前
所愿皆得发布了新的文献求助10
3秒前
3秒前
3秒前
Orange应助ChiHiRo9Q采纳,获得10
3秒前
3秒前
5秒前
5秒前
5秒前
6秒前
动人的书雪完成签到,获得积分10
7秒前
7秒前
852应助夏睿阳采纳,获得10
8秒前
8秒前
8秒前
负责萤发布了新的文献求助10
8秒前
123456发布了新的文献求助10
9秒前
酷波er应助笙木采纳,获得10
9秒前
yu完成签到,获得积分10
9秒前
10秒前
伍玖柒发布了新的文献求助10
10秒前
李健应助wangdada采纳,获得10
10秒前
naturehome发布了新的文献求助10
10秒前
Tycoon完成签到,获得积分10
11秒前
12秒前
12秒前
13秒前
一地狗粮完成签到,获得积分10
14秒前
陶醉觅夏发布了新的文献求助10
14秒前
上官若男应助luo采纳,获得10
14秒前
所所应助格兰德法泽尔采纳,获得10
15秒前
感动含烟发布了新的文献求助10
16秒前
复杂觅海发布了新的文献求助10
17秒前
我是老大应助李真采纳,获得30
17秒前
17秒前
Miao0603完成签到,获得积分10
18秒前
高分求助中
中国国际图书贸易总公司40周年纪念文集: 史论集 2500
Sustainability in Tides Chemistry 2000
Дружба 友好报 (1957-1958) 1000
The Data Economy: Tools and Applications 1000
Mantiden - Faszinierende Lauerjäger – Buch gebraucht kaufen 600
PraxisRatgeber Mantiden., faszinierende Lauerjäger. – Buch gebraucht kaufe 600
A Dissection Guide & Atlas to the Rabbit 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3112787
求助须知:如何正确求助?哪些是违规求助? 2763025
关于积分的说明 7673259
捐赠科研通 2418326
什么是DOI,文献DOI怎么找? 1283724
科研通“疑难数据库(出版商)”最低求助积分说明 619449
版权声明 599586