Determining the association between drug and disease is important in drug development. However, existing approaches for drug–disease associations (DDAs) prediction are too homogeneous in terms of feature extraction. Here, a novel graph representation approach based on light gradient boosting machine (GRLGB) is proposed for prediction of DDAs. After the introduction of the protein into a heterogeneous network, nodes features were extracted from two perspectives: network topology and biological knowledge. Finally, the GRLGB classifier was applied to predict potential DDAs. GRLGB achieved satisfactory results on Bdataset and Fdataset through 10-fold cross-validation. To further prove the reliability of the GRLGB, case studies involving anxiety disorders and clozapine were conducted. The results suggest that GRLGB can identify novel DDAs.