SleepViTransformer: Patch-based sleep spectrogram transformer for automatic sleep staging

计算机科学 变压器 编码器 光谱图 稳健性(进化) 人工智能 模式识别(心理学) 语音识别 机器学习 生物化学 量子力学 基因 操作系统 物理 电压 化学
作者
Peng Li,Yanzhen Ren,Zhiheng Luan,Xiong Chen,Xiuping Yang,Weiping Tu
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:86: 105203-105203 被引量:5
标识
DOI:10.1016/j.bspc.2023.105203
摘要

Sleep staging is a crucial aspect of sleep evaluation and disease diagnosis. Numerous automatic schemes have been developed to replace the tedious and expensive task of manual sleep staging. In this paper, we propose SleepViTransformer, a novel scheme that aims to improve the performance of automatic sleep staging. There are three main contributions. (1) A patch-based sleep spectrogram Transformer encoder is proposed for learning more effective feature representations to enhance the automatic sleep staging performance. (2) To reduce the dependence on large amounts of annotated PSG data, cross-modality knowledge from a model pre-trained on image and audio datasets is transferred to SleepViTransformer, significantly improving the model performance. (3) To improve the model robustness under noise and artifacts, a set of PSG augmentations based on the characteristics of the PSG signal is proposed. Experimental results show that SleepViTransformer achieves state-of-the-art performance on four publicly available datasets. On small-scale datasets, SleepViTransformer outperforms the runner-up by 1.8% and 2.5% on SleepEDF-20 and by 1.2% and 1.6% on SleepEDF-78 in terms of accuracy and Cohen’s kappa. SleepViTransformer also performs well on large-scale datasets, outperforming the runner-up by 0.8% and 1.2% on Physio-2018 and 0.4% and 0.2% on SHHS, respectively. The ablation experiments show that both the cross-modality pre-training and PSG augmentation module have positive impacts on improving model performance. To the best of our knowledge, this is the first model to adopt the patch encoding technique from Vision Transformer (ViT) on the sleep PSG spectrogram, showing its eminent potential for PSG signal analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
搬砖汉斯发布了新的文献求助50
1秒前
三水完成签到,获得积分10
1秒前
xialuoke完成签到,获得积分10
3秒前
爆米花应助717采纳,获得10
3秒前
gcc应助Ben采纳,获得10
4秒前
科研通AI2S应助abc采纳,获得10
5秒前
小盆呐发布了新的文献求助10
5秒前
5秒前
Aurora完成签到,获得积分10
5秒前
受伤雁荷发布了新的文献求助10
6秒前
碧蓝的海豚完成签到,获得积分10
6秒前
chen发布了新的文献求助10
6秒前
ding应助无限的数据线采纳,获得10
6秒前
闪闪完成签到,获得积分10
6秒前
青原完成签到 ,获得积分10
6秒前
lalala发布了新的文献求助20
7秒前
7秒前
8秒前
慕青应助paojiao不辣采纳,获得10
8秒前
8秒前
科研通AI5应助yaeshin采纳,获得10
9秒前
打打应助reck采纳,获得30
9秒前
9秒前
平常幼菱完成签到,获得积分10
10秒前
研友_Zlv6lL完成签到 ,获得积分10
10秒前
11秒前
11秒前
善学以致用应助受伤雁荷采纳,获得10
12秒前
香蕉觅云应助hhhhhhh采纳,获得10
12秒前
12秒前
13秒前
研友_Zlv6lL关注了科研通微信公众号
13秒前
汉堡包应助YXHTCM采纳,获得10
13秒前
123发布了新的文献求助10
14秒前
laryc发布了新的文献求助10
14秒前
冬狩完成签到,获得积分10
14秒前
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 710
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3564116
求助须知:如何正确求助?哪些是违规求助? 3137325
关于积分的说明 9421827
捐赠科研通 2837701
什么是DOI,文献DOI怎么找? 1559976
邀请新用户注册赠送积分活动 729224
科研通“疑难数据库(出版商)”最低求助积分说明 717246