无线电技术
医学
卷积神经网络
机器学习
人工智能
磁共振成像
放射科
医学物理学
计算机科学
作者
Amandine Crombé,Paolo Spinnato,Antoîne Italiano,Hervé Brisse,A. Feydy,David Fadli,Michèle Kind
标识
DOI:10.1016/j.diii.2023.09.005
摘要
This article proposes a summary of the current status of the research regarding the use of radiomics and artificial intelligence to improve the radiological assessment of patients with soft tissue sarcomas (STS), a heterogeneous group of rare and ubiquitous mesenchymal malignancies. After a first part explaining the principle of radiomics approaches, from raw image post-processing to extraction of radiomics features mined with unsupervised and supervised machine-learning algorithms, and the current research involving deep learning algorithms in STS, especially convolutional neural networks, this review details their main research developments since the formalisation of ‘radiomics’ in oncologic imaging in 2010. This review focuses on CT and MRI and does not involve ultrasonography. Radiomics and deep radiomics have been successfully applied to develop predictive models to discriminate between benign soft-tissue tumors and STS, to predict the histologic grade (i.e., the most important prognostic marker of STS), the response to neoadjuvant chemotherapy and/or radiotherapy, and the patients’ survivals and probability for presenting distant metastases. The main findings, limitations and expectations are discussed for each of these outcomes. Overall, after a first decade of publications emphasizing the potential of radiomics through retrospective proof-of-concept studies, almost all positive but with heterogeneous and often non-replicable methods, radiomics is now at a turning point in order to provide robust demonstrations of its clinical impact through open-science, independent databases, and application of good and standardized practices in radiomics such as those provided by the Image Biomarker Standardization Initiative, without forgetting innovative research paths involving other ‘-omics’ data to better understand the relationships between imaging of STS, gene-expression profiles and tumor microenvironment.
科研通智能强力驱动
Strongly Powered by AbleSci AI