Radiomics and artificial intelligence for soft-tissue sarcomas: Current status and perspectives

无线电技术 医学 卷积神经网络 机器学习 人工智能 磁共振成像 放射科 医学物理学 计算机科学
作者
Amandine Crombé,Paolo Spinnato,Antoîne Italiano,Hervé Brisse,A. Feydy,David Fadli,Michèle Kind
出处
期刊:Diagnostic and interventional imaging [Elsevier]
卷期号:104 (12): 567-583 被引量:7
标识
DOI:10.1016/j.diii.2023.09.005
摘要

This article proposes a summary of the current status of the research regarding the use of radiomics and artificial intelligence to improve the radiological assessment of patients with soft tissue sarcomas (STS), a heterogeneous group of rare and ubiquitous mesenchymal malignancies. After a first part explaining the principle of radiomics approaches, from raw image post-processing to extraction of radiomics features mined with unsupervised and supervised machine-learning algorithms, and the current research involving deep learning algorithms in STS, especially convolutional neural networks, this review details their main research developments since the formalisation of ‘radiomics’ in oncologic imaging in 2010. This review focuses on CT and MRI and does not involve ultrasonography. Radiomics and deep radiomics have been successfully applied to develop predictive models to discriminate between benign soft-tissue tumors and STS, to predict the histologic grade (i.e., the most important prognostic marker of STS), the response to neoadjuvant chemotherapy and/or radiotherapy, and the patients’ survivals and probability for presenting distant metastases. The main findings, limitations and expectations are discussed for each of these outcomes. Overall, after a first decade of publications emphasizing the potential of radiomics through retrospective proof-of-concept studies, almost all positive but with heterogeneous and often non-replicable methods, radiomics is now at a turning point in order to provide robust demonstrations of its clinical impact through open-science, independent databases, and application of good and standardized practices in radiomics such as those provided by the Image Biomarker Standardization Initiative, without forgetting innovative research paths involving other ‘-omics’ data to better understand the relationships between imaging of STS, gene-expression profiles and tumor microenvironment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
舒心的怜翠完成签到 ,获得积分10
1秒前
无望幽月完成签到 ,获得积分10
1秒前
2秒前
我是站长才怪应助十三采纳,获得10
2秒前
俭朴尔曼完成签到,获得积分20
2秒前
Andy完成签到 ,获得积分10
3秒前
打打应助卢西奥采纳,获得10
3秒前
危机的慕卉完成签到 ,获得积分10
4秒前
思源应助Lu采纳,获得10
4秒前
jiahuo1发布了新的文献求助10
4秒前
青阳完成签到,获得积分10
5秒前
5秒前
ding应助11号迪西馅饼采纳,获得10
5秒前
火星上的安柏完成签到,获得积分10
6秒前
6秒前
打铁佬完成签到,获得积分10
6秒前
6秒前
lx完成签到,获得积分10
6秒前
乐尔完成签到,获得积分20
7秒前
调皮汽车完成签到 ,获得积分10
7秒前
zzmax完成签到,获得积分10
7秒前
搜集达人应助xiaolingc采纳,获得10
7秒前
嗖嗖完成签到,获得积分10
7秒前
NexusExplorer应助simiger采纳,获得10
7秒前
8秒前
Arvinyang90完成签到,获得积分10
8秒前
gxpjzbg完成签到,获得积分10
8秒前
帅气哈密瓜完成签到,获得积分10
9秒前
我要瘦完成签到,获得积分10
10秒前
海的声音完成签到,获得积分20
10秒前
11秒前
11秒前
耕云钓月完成签到,获得积分10
11秒前
tlz发布了新的文献求助10
12秒前
Ava应助苗轩采纳,获得10
12秒前
快乐元菱完成签到 ,获得积分10
12秒前
jiahuo1完成签到,获得积分10
13秒前
13秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1200
How Maoism Was Made: Reconstructing China, 1949-1965 800
Medical technology industry in China 600
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3311457
求助须知:如何正确求助?哪些是违规求助? 2944239
关于积分的说明 8518079
捐赠科研通 2619580
什么是DOI,文献DOI怎么找? 1432472
科研通“疑难数据库(出版商)”最低求助积分说明 664671
邀请新用户注册赠送积分活动 649869