Machine learning prediction of delignification and lignin structure regulation of deep eutectic solvents pretreatment processes

木质素 化学 解聚 分散性 主成分分析 化学工程 有机化学 人工智能 计算机科学 工程类
作者
Hanwen Ge,Yaoze Liu,Baoping Zhu,Yang Xu,Rui Zhou,Huanfei Xu,Bin Li
出处
期刊:Industrial Crops and Products [Elsevier]
卷期号:203: 117138-117138 被引量:9
标识
DOI:10.1016/j.indcrop.2023.117138
摘要

Prediction of the pretreatment efficiency of lignocellulosic biomass with ternary deep eutectic solvents (DES) containing Lewis acids by machine learning (ML). Principal component analysis, partial least square method, spearman correlation matrix, random forest, extreme gradient boosting and deep neural network were used to elucidate the correlation between 77 variables and the mechanism of lignin depolymerization. The effects of raw material composition, reaction conditions, physicochemical properties of DES and structural parameters in lignin on 9 target variables including β-O-4 bond, β-β bond, β-5 bond, weight average molecular weight, number average molecular weight, polydispersity index, ratio of syringyl units to guaiacyl units, content of phenolic hydroxyl groups and delignification were analyzed. Multivariate analysis showed that temperature, polarity related parameters of HBD and acidity of Lewis acids contributed significantly to the degree of lignin depolymerization. The types and fracture mechanisms of the bonds between different structural units of lignin can be determined by the analysis of structural parameters. XGBoost model has the best performance among all the ML models, and the R square of the test sets for the target variables is above 0.76. Feature importance analysis showed that structural parameters significantly affected the pretreatment effect. The physical and chemical parameters of HBD, such as dipole moment, Log P and surface tension should be paid attention to in the design of DES. The study of the weak intermolecular forces in the lignin and DES systems is beneficial to reveal the mechanism of the pretreatment process. This study provides novel insights into the structural regulation and high-value utilization of lignin in the process of DES pretreatment of lignocellulosic biomass.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英勇的鼠标完成签到,获得积分10
1秒前
2秒前
hiten发布了新的文献求助10
3秒前
义气的靖柏完成签到 ,获得积分10
3秒前
lyt完成签到,获得积分10
4秒前
5秒前
5秒前
5秒前
6秒前
7秒前
善学以致用应助潘啊潘采纳,获得10
7秒前
就这发布了新的文献求助10
7秒前
qiuer0011完成签到,获得积分10
8秒前
ExtroGod发布了新的文献求助10
9秒前
顾大喵完成签到,获得积分10
10秒前
neko发布了新的文献求助10
11秒前
11秒前
12秒前
12秒前
嘿嘿完成签到,获得积分10
14秒前
小宝发布了新的文献求助10
15秒前
15秒前
向上的小v完成签到 ,获得积分10
16秒前
18秒前
19秒前
apple810发布了新的文献求助10
19秒前
咔哆发布了新的文献求助10
20秒前
Tink完成签到,获得积分10
20秒前
猴子魏应助zjkzh采纳,获得10
20秒前
21秒前
五木发布了新的文献求助10
22秒前
不秃头完成签到,获得积分10
23秒前
嗯哼应助一叶飘红采纳,获得20
24秒前
魏头头发布了新的文献求助10
24秒前
ethan完成签到,获得积分10
25秒前
neko完成签到,获得积分20
25秒前
A宇完成签到,获得积分10
25秒前
yiersan完成签到 ,获得积分10
26秒前
北念完成签到,获得积分10
27秒前
29秒前
高分求助中
Sustainability in ’Tides Chemistry 2000
Studien zur Ideengeschichte der Gesetzgebung 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 810
Handbook of the Mammals of the World – Volume 3: Primates 805
Ethnicities: Media, Health, and Coping 800
Gerard de Lairesse : an artist between stage and studio 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3074349
求助须知:如何正确求助?哪些是违规求助? 2727785
关于积分的说明 7500402
捐赠科研通 2375884
什么是DOI,文献DOI怎么找? 1259599
科研通“疑难数据库(出版商)”最低求助积分说明 610725
版权声明 597081