重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

Machine learning prediction of delignification and lignin structure regulation of deep eutectic solvents pretreatment processes

木质素 化学 解聚 分散性 主成分分析 化学工程 有机化学 人工智能 计算机科学 工程类
作者
Hanwen Ge,Yaoze Liu,Baoping Zhu,Yang Xu,Rui Zhou,Huanfei Xu,Bin Li
出处
期刊:Industrial Crops and Products [Elsevier]
卷期号:203: 117138-117138 被引量:27
标识
DOI:10.1016/j.indcrop.2023.117138
摘要

Prediction of the pretreatment efficiency of lignocellulosic biomass with ternary deep eutectic solvents (DES) containing Lewis acids by machine learning (ML). Principal component analysis, partial least square method, spearman correlation matrix, random forest, extreme gradient boosting and deep neural network were used to elucidate the correlation between 77 variables and the mechanism of lignin depolymerization. The effects of raw material composition, reaction conditions, physicochemical properties of DES and structural parameters in lignin on 9 target variables including β-O-4 bond, β-β bond, β-5 bond, weight average molecular weight, number average molecular weight, polydispersity index, ratio of syringyl units to guaiacyl units, content of phenolic hydroxyl groups and delignification were analyzed. Multivariate analysis showed that temperature, polarity related parameters of HBD and acidity of Lewis acids contributed significantly to the degree of lignin depolymerization. The types and fracture mechanisms of the bonds between different structural units of lignin can be determined by the analysis of structural parameters. XGBoost model has the best performance among all the ML models, and the R square of the test sets for the target variables is above 0.76. Feature importance analysis showed that structural parameters significantly affected the pretreatment effect. The physical and chemical parameters of HBD, such as dipole moment, Log P and surface tension should be paid attention to in the design of DES. The study of the weak intermolecular forces in the lignin and DES systems is beneficial to reveal the mechanism of the pretreatment process. This study provides novel insights into the structural regulation and high-value utilization of lignin in the process of DES pretreatment of lignocellulosic biomass.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hang发布了新的文献求助10
刚刚
shirleeyeahe发布了新的文献求助10
刚刚
沉静安荷发布了新的文献求助10
1秒前
1秒前
汉堡包应助白小白采纳,获得10
2秒前
许小六发布了新的文献求助10
2秒前
思源应助wwww采纳,获得10
3秒前
3秒前
uuu完成签到,获得积分10
3秒前
3秒前
量子星尘发布了新的文献求助10
4秒前
英俊的铭应助冰冰大王采纳,获得10
4秒前
陈大星啊完成签到,获得积分10
4秒前
4秒前
4秒前
机智西牛关注了科研通微信公众号
4秒前
4秒前
卷卷完成签到 ,获得积分10
5秒前
jyh应助李李采纳,获得10
5秒前
6秒前
mm发布了新的文献求助10
6秒前
7秒前
7秒前
7秒前
阳光沛柔发布了新的文献求助10
7秒前
李健应助陈大星啊采纳,获得10
8秒前
9秒前
9秒前
热情的戾发布了新的文献求助10
10秒前
xiaostou发布了新的文献求助10
10秒前
共享精神应助liling采纳,获得10
10秒前
10秒前
10秒前
刘青完成签到,获得积分10
11秒前
FLZLC发布了新的文献求助10
12秒前
上官若男应助霸王龙采纳,获得10
12秒前
不知名网友完成签到 ,获得积分10
13秒前
落寞棒棒糖完成签到 ,获得积分10
13秒前
追风者发布了新的文献求助10
13秒前
ran完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5466510
求助须知:如何正确求助?哪些是违规求助? 4570363
关于积分的说明 14324919
捐赠科研通 4496890
什么是DOI,文献DOI怎么找? 2463583
邀请新用户注册赠送积分活动 1452557
关于科研通互助平台的介绍 1427545