Machine learning prediction of delignification and lignin structure regulation of deep eutectic solvents pretreatment processes

木质素 化学 解聚 分散性 主成分分析 化学工程 有机化学 人工智能 计算机科学 工程类
作者
Hanwen Ge,Yaoze Liu,Baoping Zhu,Yang Xu,Rui Zhou,Huanfei Xu,Bin Li
出处
期刊:Industrial Crops and Products [Elsevier]
卷期号:203: 117138-117138 被引量:11
标识
DOI:10.1016/j.indcrop.2023.117138
摘要

Prediction of the pretreatment efficiency of lignocellulosic biomass with ternary deep eutectic solvents (DES) containing Lewis acids by machine learning (ML). Principal component analysis, partial least square method, spearman correlation matrix, random forest, extreme gradient boosting and deep neural network were used to elucidate the correlation between 77 variables and the mechanism of lignin depolymerization. The effects of raw material composition, reaction conditions, physicochemical properties of DES and structural parameters in lignin on 9 target variables including β-O-4 bond, β-β bond, β-5 bond, weight average molecular weight, number average molecular weight, polydispersity index, ratio of syringyl units to guaiacyl units, content of phenolic hydroxyl groups and delignification were analyzed. Multivariate analysis showed that temperature, polarity related parameters of HBD and acidity of Lewis acids contributed significantly to the degree of lignin depolymerization. The types and fracture mechanisms of the bonds between different structural units of lignin can be determined by the analysis of structural parameters. XGBoost model has the best performance among all the ML models, and the R square of the test sets for the target variables is above 0.76. Feature importance analysis showed that structural parameters significantly affected the pretreatment effect. The physical and chemical parameters of HBD, such as dipole moment, Log P and surface tension should be paid attention to in the design of DES. The study of the weak intermolecular forces in the lignin and DES systems is beneficial to reveal the mechanism of the pretreatment process. This study provides novel insights into the structural regulation and high-value utilization of lignin in the process of DES pretreatment of lignocellulosic biomass.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
林森发布了新的文献求助10
3秒前
3秒前
那里有颗星星完成签到,获得积分10
3秒前
丙队长完成签到,获得积分10
4秒前
酷炫蚂蚁完成签到,获得积分20
5秒前
5秒前
科研通AI5应助叶子采纳,获得10
5秒前
感激不尽完成签到,获得积分10
5秒前
wuyudelan完成签到,获得积分10
6秒前
zstyry9998完成签到,获得积分10
8秒前
RH发布了新的文献求助10
8秒前
冷傲迎梦发布了新的文献求助10
8秒前
10秒前
weiv完成签到,获得积分10
12秒前
Teslwang完成签到,获得积分10
12秒前
12秒前
12秒前
zhangzhen发布了新的文献求助10
12秒前
英姑应助彬彬采纳,获得10
13秒前
传奇3应助maomao采纳,获得10
15秒前
稀罕你发布了新的文献求助10
16秒前
研友_VZG7GZ应助毛豆爸爸采纳,获得10
16秒前
naonao完成签到,获得积分20
16秒前
摆烂的实验室打工人完成签到,获得积分10
16秒前
Jenny发布了新的文献求助50
18秒前
19秒前
hehe完成签到,获得积分20
19秒前
naonao发布了新的文献求助10
20秒前
Glufo完成签到,获得积分10
20秒前
21秒前
qqqqqq发布了新的文献求助10
22秒前
忘羡222发布了新的文献求助30
22秒前
紫菜发布了新的文献求助10
24秒前
28秒前
28秒前
独特亦旋完成签到,获得积分20
29秒前
今后应助qqqqqq采纳,获得10
30秒前
小马甲应助飞羽采纳,获得10
30秒前
星辰大海应助西内!卡Q因采纳,获得10
31秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824