Deep learning model for displacement monitoring of super high arch dams based on measured temperature data

安全监测 残余物 结构健康监测 工程类 稳健性(进化) 拱坝 人工智能 流离失所(心理学) 变形监测 机器学习 计算机科学 数据挖掘 拱门 结构工程 变形(气象学) 算法 地质学 海洋学 基因 生物技术 生物 化学 心理治疗师 生物化学 心理学
作者
Taiqi Lu,Chongshi Gu,Dongyang Yuan,Kang Zhang,Chenfei Shao
出处
期刊:Measurement [Elsevier]
卷期号:222: 113579-113579 被引量:25
标识
DOI:10.1016/j.measurement.2023.113579
摘要

Dam displacement, an important indicator for the health monitoring of dam safety structures, can effectively reflect its operational status. Displacement prediction models based on measured data are currently an important tool for dam safety monitoring. However, the majority of existing models are based on statistical models or shallow machine models, which are difficult to characterize the complex coupling relationship between displacement and water level, temperature and time-dependent factors. To address the above problems, this paper proposes a novel deep learning model that combines Inception architectures with residual connections (Inceprion-ResNet) and Gate Recurrent Unit (GRU). This model employs improved Inception-ResNet blocks with channel attention and spatial attention modules to extract features from dam deformation-related environmental factors sequences at multiple scales. Subsequently, GRU is utilized to learn from long-term dependencies. The proposed model fully combines the remarkable feature extraction capability of the Inception-ResNet block with the learning capability of GRU for long-term dependencies. The availability of the proposed model is tested with measured data of a super high arch dam. The experimental results show that the proposed model outperforms two typical shallow machine learning methods and two typical deep learning models in the four typical monitoring points selected, which demonstrates convincingly that the proposed model is able to predict dam deformation with high accuracy and robustness for dam structure safety monitoring.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
淼淼完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
1秒前
ginchuodan完成签到,获得积分20
2秒前
坚果完成签到,获得积分10
2秒前
2秒前
ccc关注了科研通微信公众号
3秒前
3秒前
3秒前
4秒前
坚果发布了新的文献求助10
5秒前
mjf111完成签到,获得积分10
6秒前
7秒前
guojingjing发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
8秒前
8秒前
8秒前
赵鹏发布了新的文献求助10
9秒前
李爱国应助allzzwell采纳,获得10
9秒前
penpen完成签到,获得积分10
9秒前
517完成签到 ,获得积分10
10秒前
11秒前
11秒前
打工人完成签到,获得积分10
12秒前
12秒前
13秒前
万能图书馆应助Judy采纳,获得10
13秒前
14秒前
14秒前
11111发布了新的文献求助10
15秒前
Franco完成签到,获得积分10
15秒前
Lunjiang发布了新的文献求助10
16秒前
哈吉米发布了新的文献求助10
16秒前
元谷雪发布了新的文献求助10
17秒前
ZXC发布了新的文献求助10
17秒前
高兴的外套完成签到,获得积分10
17秒前
呆一起完成签到,获得积分10
17秒前
zmhstb发布了新的文献求助10
18秒前
FrankJeffison完成签到,获得积分10
18秒前
19秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5695186
求助须知:如何正确求助?哪些是违规求助? 5100843
关于积分的说明 15215623
捐赠科研通 4851627
什么是DOI,文献DOI怎么找? 2602586
邀请新用户注册赠送积分活动 1554228
关于科研通互助平台的介绍 1512233