Deep learning model for displacement monitoring of super high arch dams based on measured temperature data

安全监测 残余物 结构健康监测 工程类 稳健性(进化) 拱坝 人工智能 流离失所(心理学) 变形监测 机器学习 计算机科学 数据挖掘 拱门 结构工程 变形(气象学) 算法 地质学 海洋学 基因 生物技术 生物 化学 心理治疗师 生物化学 心理学
作者
Taiqi Lu,Chongshi Gu,Dongyang Yuan,Kang Zhang,Chenfei Shao
出处
期刊:Measurement [Elsevier]
卷期号:222: 113579-113579 被引量:25
标识
DOI:10.1016/j.measurement.2023.113579
摘要

Dam displacement, an important indicator for the health monitoring of dam safety structures, can effectively reflect its operational status. Displacement prediction models based on measured data are currently an important tool for dam safety monitoring. However, the majority of existing models are based on statistical models or shallow machine models, which are difficult to characterize the complex coupling relationship between displacement and water level, temperature and time-dependent factors. To address the above problems, this paper proposes a novel deep learning model that combines Inception architectures with residual connections (Inceprion-ResNet) and Gate Recurrent Unit (GRU). This model employs improved Inception-ResNet blocks with channel attention and spatial attention modules to extract features from dam deformation-related environmental factors sequences at multiple scales. Subsequently, GRU is utilized to learn from long-term dependencies. The proposed model fully combines the remarkable feature extraction capability of the Inception-ResNet block with the learning capability of GRU for long-term dependencies. The availability of the proposed model is tested with measured data of a super high arch dam. The experimental results show that the proposed model outperforms two typical shallow machine learning methods and two typical deep learning models in the four typical monitoring points selected, which demonstrates convincingly that the proposed model is able to predict dam deformation with high accuracy and robustness for dam structure safety monitoring.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
Zeee应助善良的飞鸟采纳,获得10
1秒前
1秒前
Tanya完成签到 ,获得积分10
3秒前
asdfzxcv应助感动的安阳采纳,获得10
4秒前
4秒前
Kisace完成签到 ,获得积分10
5秒前
大个应助闪闪问蕊采纳,获得10
6秒前
无理发布了新的文献求助10
6秒前
SciGPT应助kjwu采纳,获得10
7秒前
7秒前
aga完成签到,获得积分10
7秒前
8秒前
浅忆完成签到,获得积分10
8秒前
8秒前
MOFS完成签到,获得积分10
8秒前
9秒前
大个应助ZequnFan采纳,获得10
9秒前
zh123完成签到,获得积分10
9秒前
幽幽发布了新的文献求助10
10秒前
11秒前
11秒前
11秒前
甜甜晓露发布了新的文献求助10
12秒前
FOLLOW发布了新的文献求助10
12秒前
12秒前
12秒前
13秒前
asdfzxcv应助小张同学采纳,获得10
13秒前
13秒前
GSR发布了新的文献求助10
13秒前
14秒前
欣喜访冬给欣喜访冬的求助进行了留言
14秒前
qwer1234完成签到,获得积分10
15秒前
zts发布了新的文献求助10
15秒前
15秒前
15秒前
15秒前
YMing发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5643469
求助须知:如何正确求助?哪些是违规求助? 4761277
关于积分的说明 15020918
捐赠科研通 4801788
什么是DOI,文献DOI怎么找? 2567067
邀请新用户注册赠送积分活动 1524836
关于科研通互助平台的介绍 1484403