Deep learning model for displacement monitoring of super high arch dams based on measured temperature data

安全监测 残余物 结构健康监测 工程类 稳健性(进化) 拱坝 人工智能 流离失所(心理学) 变形监测 机器学习 计算机科学 数据挖掘 拱门 结构工程 变形(气象学) 算法 地质学 海洋学 基因 生物技术 生物 化学 心理治疗师 生物化学 心理学
作者
Tianjian Lu,Chongshi Gu,Dongyang Yuan,Kang Zhang,Chenfei Shao
出处
期刊:Measurement [Elsevier BV]
卷期号:222: 113579-113579
标识
DOI:10.1016/j.measurement.2023.113579
摘要

Dam displacement, an important indicator for the health monitoring of dam safety structures, can effectively reflect its operational status. Displacement prediction models based on measured data are currently an important tool for dam safety monitoring. However, the majority of existing models are based on statistical models or shallow machine models, which are difficult to characterize the complex coupling relationship between displacement and water level, temperature and time-dependent factors. To address the above problems, this paper proposes a novel deep learning model that combines Inception architectures with residual connections (Inceprion-ResNet) and Gate Recurrent Unit (GRU). This model employs improved Inception-ResNet blocks with channel attention and spatial attention modules to extract features from dam deformation-related environmental factors sequences at multiple scales. Subsequently, GRU is utilized to learn from long-term dependencies. The proposed model fully combines the remarkable feature extraction capability of the Inception-ResNet block with the learning capability of GRU for long-term dependencies. The availability of the proposed model is tested with measured data of a super high arch dam. The experimental results show that the proposed model outperforms two typical shallow machine learning methods and two typical deep learning models in the four typical monitoring points selected, which demonstrates convincingly that the proposed model is able to predict dam deformation with high accuracy and robustness for dam structure safety monitoring.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健的小迷弟应助apeach采纳,获得30
刚刚
李萌萌完成签到,获得积分10
刚刚
魏猛完成签到,获得积分10
刚刚
所所应助everglow采纳,获得30
1秒前
1秒前
linxunxiazhi发布了新的文献求助10
1秒前
grs完成签到,获得积分10
2秒前
开心浩阑应助落后以旋采纳,获得20
2秒前
2秒前
2秒前
Aggie发布了新的文献求助50
2秒前
lilei完成签到,获得积分10
3秒前
zsg发布了新的文献求助10
3秒前
热心市民小红花应助lplplp采纳,获得10
3秒前
Tiwiiw完成签到 ,获得积分10
4秒前
4秒前
欣喜书易完成签到 ,获得积分10
4秒前
zyl完成签到,获得积分10
4秒前
5秒前
张达发布了新的文献求助10
5秒前
a成完成签到,获得积分10
5秒前
饱满的苗条完成签到,获得积分10
5秒前
shaguodoufutang完成签到,获得积分10
7秒前
8秒前
乐彼之园发布了新的文献求助10
8秒前
clone2012发布了新的文献求助10
8秒前
9秒前
帅气的猫发布了新的文献求助10
9秒前
张倩完成签到,获得积分10
10秒前
易俊发布了新的文献求助10
10秒前
yi5feng完成签到,获得积分10
10秒前
Dsunflower完成签到 ,获得积分10
10秒前
无花果应助拓跋箴采纳,获得10
10秒前
10秒前
11秒前
11秒前
客厅狂欢完成签到,获得积分10
11秒前
放青松完成签到,获得积分10
11秒前
Harry完成签到,获得积分10
11秒前
冷静白晴完成签到,获得积分10
12秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950593
求助须知:如何正确求助?哪些是违规求助? 3495971
关于积分的说明 11080135
捐赠科研通 3226361
什么是DOI,文献DOI怎么找? 1783812
邀请新用户注册赠送积分活动 867916
科研通“疑难数据库(出版商)”最低求助积分说明 800977