亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep learning model for displacement monitoring of super high arch dams based on measured temperature data

安全监测 残余物 结构健康监测 工程类 稳健性(进化) 拱坝 人工智能 流离失所(心理学) 变形监测 机器学习 计算机科学 数据挖掘 拱门 结构工程 变形(气象学) 算法 地质学 海洋学 基因 生物技术 生物 化学 心理治疗师 生物化学 心理学
作者
Taiqi Lu,Chongshi Gu,Dongyang Yuan,Kang Zhang,Chenfei Shao
出处
期刊:Measurement [Elsevier]
卷期号:222: 113579-113579 被引量:25
标识
DOI:10.1016/j.measurement.2023.113579
摘要

Dam displacement, an important indicator for the health monitoring of dam safety structures, can effectively reflect its operational status. Displacement prediction models based on measured data are currently an important tool for dam safety monitoring. However, the majority of existing models are based on statistical models or shallow machine models, which are difficult to characterize the complex coupling relationship between displacement and water level, temperature and time-dependent factors. To address the above problems, this paper proposes a novel deep learning model that combines Inception architectures with residual connections (Inceprion-ResNet) and Gate Recurrent Unit (GRU). This model employs improved Inception-ResNet blocks with channel attention and spatial attention modules to extract features from dam deformation-related environmental factors sequences at multiple scales. Subsequently, GRU is utilized to learn from long-term dependencies. The proposed model fully combines the remarkable feature extraction capability of the Inception-ResNet block with the learning capability of GRU for long-term dependencies. The availability of the proposed model is tested with measured data of a super high arch dam. The experimental results show that the proposed model outperforms two typical shallow machine learning methods and two typical deep learning models in the four typical monitoring points selected, which demonstrates convincingly that the proposed model is able to predict dam deformation with high accuracy and robustness for dam structure safety monitoring.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
daidai发布了新的文献求助10
6秒前
哈哈哈开开心心完成签到,获得积分10
11秒前
15秒前
CipherSage应助VV2001采纳,获得10
17秒前
flyinthesky完成签到,获得积分10
17秒前
daidai完成签到,获得积分10
20秒前
30秒前
世良发布了新的文献求助10
33秒前
斯文败类应助科研通管家采纳,获得10
36秒前
归尘应助科研通管家采纳,获得10
36秒前
归尘应助科研通管家采纳,获得10
36秒前
归尘应助科研通管家采纳,获得10
36秒前
归尘应助科研通管家采纳,获得10
36秒前
科研通AI2S应助科研通管家采纳,获得10
36秒前
归尘应助科研通管家采纳,获得10
36秒前
归尘应助科研通管家采纳,获得10
37秒前
归尘应助科研通管家采纳,获得10
37秒前
科研通AI2S应助科研通管家采纳,获得10
37秒前
ceeray23应助科研通管家采纳,获得10
37秒前
ceeray23应助科研通管家采纳,获得10
37秒前
ceeray23应助科研通管家采纳,获得10
37秒前
38秒前
张晓祁完成签到,获得积分10
38秒前
优美的小笨蛋应助sunaijia采纳,获得10
43秒前
桐桐应助世良采纳,获得10
44秒前
艾米发布了新的文献求助10
47秒前
yueying完成签到,获得积分10
49秒前
今后应助体贴花卷采纳,获得10
52秒前
54秒前
MchemG应助chen采纳,获得10
54秒前
艾米完成签到,获得积分10
1分钟前
1分钟前
1分钟前
体贴花卷发布了新的文献求助10
1分钟前
科研通AI6应助体贴花卷采纳,获得10
1分钟前
尼古拉斯铁柱完成签到 ,获得积分10
1分钟前
1分钟前
hxh完成签到,获得积分10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5650806
求助须知:如何正确求助?哪些是违规求助? 4781743
关于积分的说明 15052599
捐赠科研通 4809617
什么是DOI,文献DOI怎么找? 2572419
邀请新用户注册赠送积分活动 1528494
关于科研通互助平台的介绍 1487399