A Multilevel Temporal Convolutional Network Model with Wavelet Decomposition and Boruta Selection for Forecasting Monthly Precipitation

降水 异常(物理) 环境科学 气候学 小波 长江 选择(遗传算法) 计算机科学 气象学 人工智能 地质学 中国 地理 物理 考古 凝聚态物理
作者
Lizhi Tao,Xinguang He,Jiajia Li,Dong Yang
出处
期刊:Journal of Hydrometeorology [American Meteorological Society]
卷期号:24 (11): 1991-2005
标识
DOI:10.1175/jhm-d-22-0177.1
摘要

Abstract In this study, a multilevel temporal convolutional network (MTCN) model is proposed for 1-month-ahead forecasting of precipitation. In the MTCN model, à trous wavelet transform (ATWT) is first utilized to decompose the standardized monthly precipitation anomaly and its candidate predictors into their components with the different time scales. Then, at each of the time levels, a temporal convolutional network (TCN) model is built to forecast the precipitation anomaly component by combining with the Boruta selection algorithm (TCN-B) for identifying important model inputs from corresponding predictor components. Finally, the precipitation forecast is achieved by summing all the forecasted anomaly components and applying the inverse transform of the standardized monthly precipitation. The proposed MTCN is tested and compared to the TCN-B and TCN using monthly precipitation at 189 stations in the Yangtze River basin. The TCN-B is formed by coupling the TCN with the Boruta algorithm. The comparison results show that the TCN-B outperforms the TCN, and the MTCN has the best performance among the three models. Compared to the TCN, the MTCN provides a significant improvement for all stations, especially for the eastern stations of the basin. It is also shown that all three models perform better in spring and summer and have the weakest abilities in winter. The MTCN has a great improvement in predicting precipitation of all four seasons compared with the other two models. Additionally, all three models exhibit better prediction performance in the western region than in the eastern region of the basin, which is strongly related to the spatial distribution of precipitation variability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张萌完成签到 ,获得积分10
1秒前
积极的尔白完成签到 ,获得积分10
3秒前
科研通AI2S应助加菲丰丰采纳,获得10
3秒前
4秒前
5秒前
沉静的万天完成签到 ,获得积分10
5秒前
珍珠奶茶发布了新的文献求助10
7秒前
alex发布了新的文献求助30
8秒前
10秒前
tangyuan发布了新的文献求助10
10秒前
11秒前
生动的海露完成签到,获得积分10
12秒前
许容完成签到,获得积分10
14秒前
蓝胖子举报Minixiao求助涉嫌违规
15秒前
都是发布了新的文献求助10
16秒前
spark317发布了新的文献求助10
16秒前
852应助你好啊采纳,获得10
19秒前
火星仙人掌完成签到 ,获得积分10
19秒前
zhaogl完成签到,获得积分10
21秒前
24秒前
dannnnn完成签到,获得积分10
24秒前
Akim应助zouzhao采纳,获得10
24秒前
whutzxy完成签到,获得积分10
25秒前
26秒前
luca完成签到,获得积分10
29秒前
594778089发布了新的文献求助10
29秒前
spark317完成签到,获得积分10
30秒前
36秒前
37秒前
38秒前
科隆龙完成签到,获得积分10
38秒前
39秒前
39秒前
工力所发布了新的文献求助30
42秒前
泽灵完成签到,获得积分10
43秒前
你好啊发布了新的文献求助10
43秒前
泽灵发布了新的文献求助10
45秒前
陈早睡完成签到,获得积分10
45秒前
LYL完成签到,获得积分10
45秒前
麻薯头头发布了新的文献求助10
47秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137706
求助须知:如何正确求助?哪些是违规求助? 2788609
关于积分的说明 7787778
捐赠科研通 2444975
什么是DOI,文献DOI怎么找? 1300139
科研通“疑难数据库(出版商)”最低求助积分说明 625814
版权声明 601043