Mental fatigue assessment by an arbitrary channel EEG based on morphological features and LSTM-CNN

脑电图 卷积神经网络 模式识别(心理学) 人工智能 计算机科学 频道(广播) 清醒 一般化 特征(语言学) 特征提取 心理学 数学 神经科学 计算机网络 数学分析 语言学 哲学
作者
Xiaolong Wu,Jianhong Yang,Yongcong Shao,Xuewei Chen
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:167: 107652-107652 被引量:7
标识
DOI:10.1016/j.compbiomed.2023.107652
摘要

In order to achieve more sensitive mental fatigue assessment (MFA) based on an arbitrary channel EEG, this study proposed a series of feature extraction methods that combine mathematical morphology (MM), as well as an LSTM-CNN architecture. Firstly, 37 subjects had their resting-state EEGs collected at rested wakefulness (RW) and after 24 h of sleep deprivation (SD) using a 30-channel EEG acquisition device, the RW and SD groups were regarded as the negative and positive groups of mental fatigue, respectively, and the EEG collection were further categorized into two conditions: eye-opened state (EO) and eye-closed state (EC). Then, since MM can reflect the morphological characteristics of EEG rhythms and their potentials relatively independently of the time-frequency analysis and phase calculation, the MM methods were found to better reflect the mental fatigue after SD statistically, whether for single features (ANOVA: p<0.000001), multiple features (clustering by K-means, t-test: p<0.01), or time series feature spaces (calculating CD, t-test: p<0.01) of a single channel. Finally, the LSTM-CNN enhanced the generalization ability when dealing with different single-channel EEG by combining GRUs with convolutional layers: comparing the AUCs of different architectures for MFA based on an arbitrary channel, LSTM-CNN (0.992) > LSTM network (0.94) > CNN (0.831) > MLP (0.754). Moreover, the use of MM also improved the accuracy of analyzed architectures, and the true/false positive rate (TPR/FPR) of the LSTM-CNN architecture for MFA based on an arbitrary channel reached 97.024 %/3.497 %, which provided a feasible solution for the arbitrary channel EEG-based MFA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
卡卡龍特完成签到,获得积分10
刚刚
jaya完成签到,获得积分10
1秒前
Jiali发布了新的文献求助10
1秒前
1秒前
今后应助王宁采纳,获得10
1秒前
2秒前
sunshine发布了新的文献求助10
2秒前
犀牛完成签到,获得积分20
2秒前
孤海未蓝发布了新的文献求助10
3秒前
leungya完成签到,获得积分10
3秒前
文艺的芫完成签到,获得积分10
3秒前
领导范儿应助ZBW采纳,获得10
3秒前
旺仔先生完成签到,获得积分0
4秒前
4秒前
Answer完成签到,获得积分10
4秒前
Lucas应助颜云尔采纳,获得10
4秒前
卡卡龍特发布了新的文献求助10
4秒前
领导范儿应助mrz采纳,获得10
5秒前
NexusExplorer应助Giroro_roro采纳,获得10
5秒前
琉璃完成签到 ,获得积分10
5秒前
一粟的粉r发布了新的文献求助10
6秒前
深情安青应助Jiang采纳,获得10
6秒前
李健的小迷弟应助筋筋子采纳,获得10
6秒前
ipan918完成签到,获得积分10
6秒前
jaya发布了新的文献求助10
6秒前
迅速雨琴发布了新的文献求助10
7秒前
所所应助乔乔采纳,获得10
7秒前
自然1111发布了新的文献求助10
7秒前
7秒前
8秒前
wcy完成签到 ,获得积分10
8秒前
量子星尘发布了新的文献求助10
8秒前
Lucas选李华完成签到 ,获得积分10
9秒前
9秒前
9秒前
orixero应助Hannah采纳,获得10
9秒前
poem发布了新的文献求助10
10秒前
我是老大应助xiaomili采纳,获得10
10秒前
搜集达人应助青青在努力采纳,获得10
11秒前
11秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986953
求助须知:如何正确求助?哪些是违规求助? 3529326
关于积分的说明 11244328
捐赠科研通 3267695
什么是DOI,文献DOI怎么找? 1803880
邀请新用户注册赠送积分活动 881223
科研通“疑难数据库(出版商)”最低求助积分说明 808620