Mental fatigue assessment by an arbitrary channel EEG based on morphological features and LSTM-CNN

脑电图 卷积神经网络 模式识别(心理学) 人工智能 计算机科学 频道(广播) 清醒 一般化 特征(语言学) 特征提取 心理学 数学 神经科学 计算机网络 数学分析 语言学 哲学
作者
Xiaolong Wu,Jianhong Yang,Yongcong Shao,Xuewei Chen
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:167: 107652-107652 被引量:8
标识
DOI:10.1016/j.compbiomed.2023.107652
摘要

In order to achieve more sensitive mental fatigue assessment (MFA) based on an arbitrary channel EEG, this study proposed a series of feature extraction methods that combine mathematical morphology (MM), as well as an LSTM-CNN architecture. Firstly, 37 subjects had their resting-state EEGs collected at rested wakefulness (RW) and after 24 h of sleep deprivation (SD) using a 30-channel EEG acquisition device, the RW and SD groups were regarded as the negative and positive groups of mental fatigue, respectively, and the EEG collection were further categorized into two conditions: eye-opened state (EO) and eye-closed state (EC). Then, since MM can reflect the morphological characteristics of EEG rhythms and their potentials relatively independently of the time-frequency analysis and phase calculation, the MM methods were found to better reflect the mental fatigue after SD statistically, whether for single features (ANOVA: p<0.000001), multiple features (clustering by K-means, t-test: p<0.01), or time series feature spaces (calculating CD, t-test: p<0.01) of a single channel. Finally, the LSTM-CNN enhanced the generalization ability when dealing with different single-channel EEG by combining GRUs with convolutional layers: comparing the AUCs of different architectures for MFA based on an arbitrary channel, LSTM-CNN (0.992) > LSTM network (0.94) > CNN (0.831) > MLP (0.754). Moreover, the use of MM also improved the accuracy of analyzed architectures, and the true/false positive rate (TPR/FPR) of the LSTM-CNN architecture for MFA based on an arbitrary channel reached 97.024 %/3.497 %, which provided a feasible solution for the arbitrary channel EEG-based MFA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
believeachao完成签到,获得积分10
2秒前
VV完成签到,获得积分10
3秒前
3秒前
伯。发布了新的文献求助10
3秒前
ocean完成签到,获得积分10
3秒前
3秒前
小二郎应助我不是BOB采纳,获得10
4秒前
4秒前
浪迹青丘狐完成签到 ,获得积分10
4秒前
NNCS完成签到,获得积分10
4秒前
4秒前
若尘完成签到,获得积分10
5秒前
qq完成签到,获得积分10
5秒前
清爽的寄容完成签到,获得积分10
5秒前
jz完成签到,获得积分10
6秒前
晚睡是小狗完成签到,获得积分10
6秒前
科研通AI6应助会飞的蜗牛采纳,获得10
6秒前
6秒前
球球完成签到,获得积分10
7秒前
bkagyin应助下一页采纳,获得10
7秒前
科研通AI5应助neb8采纳,获得10
7秒前
荒野风发布了新的文献求助10
7秒前
8秒前
CodeCraft应助dtmdg采纳,获得10
8秒前
美丽晓蓝发布了新的文献求助10
8秒前
Revovler发布了新的文献求助10
9秒前
唯有长青关注了科研通微信公众号
9秒前
情怀应助快乐小白w采纳,获得10
9秒前
10秒前
刘三萍发布了新的文献求助10
10秒前
鳗鱼衣完成签到 ,获得积分10
10秒前
科研狗发布了新的文献求助10
11秒前
zzzzzz完成签到,获得积分10
11秒前
明理柜子关注了科研通微信公众号
11秒前
11秒前
11秒前
shiyi完成签到,获得积分10
11秒前
三五七言完成签到,获得积分10
11秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5072516
求助须知:如何正确求助?哪些是违规求助? 4292847
关于积分的说明 13376248
捐赠科研通 4114022
什么是DOI,文献DOI怎么找? 2252800
邀请新用户注册赠送积分活动 1257561
关于科研通互助平台的介绍 1190352