Mental fatigue assessment by an arbitrary channel EEG based on morphological features and LSTM-CNN

脑电图 卷积神经网络 模式识别(心理学) 人工智能 计算机科学 频道(广播) 清醒 一般化 特征(语言学) 特征提取 心理学 数学 神经科学 计算机网络 数学分析 语言学 哲学
作者
Xiaolong Wu,Jianhong Yang,Yongcong Shao,Xuewei Chen
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:167: 107652-107652 被引量:2
标识
DOI:10.1016/j.compbiomed.2023.107652
摘要

In order to achieve more sensitive mental fatigue assessment (MFA) based on an arbitrary channel EEG, this study proposed a series of feature extraction methods that combine mathematical morphology (MM), as well as an LSTM-CNN architecture. Firstly, 37 subjects had their resting-state EEGs collected at rested wakefulness (RW) and after 24 h of sleep deprivation (SD) using a 30-channel EEG acquisition device, the RW and SD groups were regarded as the negative and positive groups of mental fatigue, respectively, and the EEG collection were further categorized into two conditions: eye-opened state (EO) and eye-closed state (EC). Then, since MM can reflect the morphological characteristics of EEG rhythms and their potentials relatively independently of the time-frequency analysis and phase calculation, the MM methods were found to better reflect the mental fatigue after SD statistically, whether for single features (ANOVA: p<0.000001), multiple features (clustering by K-means, t-test: p<0.01), or time series feature spaces (calculating CD, t-test: p<0.01) of a single channel. Finally, the LSTM-CNN enhanced the generalization ability when dealing with different single-channel EEG by combining GRUs with convolutional layers: comparing the AUCs of different architectures for MFA based on an arbitrary channel, LSTM-CNN (0.992) > LSTM network (0.94) > CNN (0.831) > MLP (0.754). Moreover, the use of MM also improved the accuracy of analyzed architectures, and the true/false positive rate (TPR/FPR) of the LSTM-CNN architecture for MFA based on an arbitrary channel reached 97.024 %/3.497 %, which provided a feasible solution for the arbitrary channel EEG-based MFA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
tt825发布了新的文献求助30
刚刚
行舟完成签到 ,获得积分10
1秒前
1111发布了新的文献求助10
1秒前
洋洋完成签到,获得积分10
1秒前
相爱就永远在一起完成签到,获得积分10
5秒前
6秒前
8秒前
Aiden完成签到,获得积分10
8秒前
9秒前
11秒前
科研通AI2S应助啊啦啦采纳,获得10
12秒前
余九发布了新的文献求助10
12秒前
周江阔发布了新的文献求助10
12秒前
bella完成签到,获得积分10
12秒前
开心笑白发布了新的文献求助30
12秒前
奔跑的胰岛素完成签到,获得积分10
16秒前
Riman发布了新的文献求助30
16秒前
Foura完成签到,获得积分10
16秒前
17秒前
Foura发布了新的文献求助10
20秒前
iNk应助wodetaiyangLLL采纳,获得10
20秒前
20秒前
21秒前
领导范儿应助jovrtic采纳,获得10
21秒前
21秒前
所所应助初空月儿采纳,获得10
21秒前
22秒前
888886kn发布了新的文献求助10
24秒前
不动僧完成签到,获得积分10
25秒前
王宇涵发布了新的文献求助10
25秒前
xiong完成签到 ,获得积分10
26秒前
思维发布了新的文献求助10
28秒前
一条鱼完成签到 ,获得积分10
29秒前
高大凌寒应助科研通管家采纳,获得10
29秒前
CipherSage应助科研通管家采纳,获得20
29秒前
打打应助科研通管家采纳,获得10
29秒前
小马甲应助科研通管家采纳,获得10
29秒前
Mutsu应助科研通管家采纳,获得20
29秒前
星辰大海应助科研通管家采纳,获得30
30秒前
隐形曼青应助科研通管家采纳,获得10
30秒前
高分求助中
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
Die Gottesanbeterin: Mantis religiosa: 656 400
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3165286
求助须知:如何正确求助?哪些是违规求助? 2816322
关于积分的说明 7912245
捐赠科研通 2475959
什么是DOI,文献DOI怎么找? 1318465
科研通“疑难数据库(出版商)”最低求助积分说明 632171
版权声明 602388