脑电图
卷积神经网络
模式识别(心理学)
人工智能
计算机科学
频道(广播)
清醒
一般化
特征(语言学)
特征提取
心理学
数学
神经科学
计算机网络
数学分析
语言学
哲学
作者
Xiaolong Wu,Jianhong Yang,Yongcong Shao,Xuewei Chen
标识
DOI:10.1016/j.compbiomed.2023.107652
摘要
In order to achieve more sensitive mental fatigue assessment (MFA) based on an arbitrary channel EEG, this study proposed a series of feature extraction methods that combine mathematical morphology (MM), as well as an LSTM-CNN architecture. Firstly, 37 subjects had their resting-state EEGs collected at rested wakefulness (RW) and after 24 h of sleep deprivation (SD) using a 30-channel EEG acquisition device, the RW and SD groups were regarded as the negative and positive groups of mental fatigue, respectively, and the EEG collection were further categorized into two conditions: eye-opened state (EO) and eye-closed state (EC). Then, since MM can reflect the morphological characteristics of EEG rhythms and their potentials relatively independently of the time-frequency analysis and phase calculation, the MM methods were found to better reflect the mental fatigue after SD statistically, whether for single features (ANOVA: p<0.000001), multiple features (clustering by K-means, t-test: p<0.01), or time series feature spaces (calculating CD, t-test: p<0.01) of a single channel. Finally, the LSTM-CNN enhanced the generalization ability when dealing with different single-channel EEG by combining GRUs with convolutional layers: comparing the AUCs of different architectures for MFA based on an arbitrary channel, LSTM-CNN (0.992) > LSTM network (0.94) > CNN (0.831) > MLP (0.754). Moreover, the use of MM also improved the accuracy of analyzed architectures, and the true/false positive rate (TPR/FPR) of the LSTM-CNN architecture for MFA based on an arbitrary channel reached 97.024 %/3.497 %, which provided a feasible solution for the arbitrary channel EEG-based MFA.
科研通智能强力驱动
Strongly Powered by AbleSci AI