Mental fatigue assessment by an arbitrary channel EEG based on morphological features and LSTM-CNN

脑电图 卷积神经网络 模式识别(心理学) 人工智能 计算机科学 频道(广播) 清醒 一般化 特征(语言学) 特征提取 心理学 数学 神经科学 计算机网络 数学分析 语言学 哲学
作者
Xiaolong Wu,Jianhong Yang,Yongcong Shao,Xuewei Chen
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:167: 107652-107652 被引量:2
标识
DOI:10.1016/j.compbiomed.2023.107652
摘要

In order to achieve more sensitive mental fatigue assessment (MFA) based on an arbitrary channel EEG, this study proposed a series of feature extraction methods that combine mathematical morphology (MM), as well as an LSTM-CNN architecture. Firstly, 37 subjects had their resting-state EEGs collected at rested wakefulness (RW) and after 24 h of sleep deprivation (SD) using a 30-channel EEG acquisition device, the RW and SD groups were regarded as the negative and positive groups of mental fatigue, respectively, and the EEG collection were further categorized into two conditions: eye-opened state (EO) and eye-closed state (EC). Then, since MM can reflect the morphological characteristics of EEG rhythms and their potentials relatively independently of the time-frequency analysis and phase calculation, the MM methods were found to better reflect the mental fatigue after SD statistically, whether for single features (ANOVA: p<0.000001), multiple features (clustering by K-means, t-test: p<0.01), or time series feature spaces (calculating CD, t-test: p<0.01) of a single channel. Finally, the LSTM-CNN enhanced the generalization ability when dealing with different single-channel EEG by combining GRUs with convolutional layers: comparing the AUCs of different architectures for MFA based on an arbitrary channel, LSTM-CNN (0.992) > LSTM network (0.94) > CNN (0.831) > MLP (0.754). Moreover, the use of MM also improved the accuracy of analyzed architectures, and the true/false positive rate (TPR/FPR) of the LSTM-CNN architecture for MFA based on an arbitrary channel reached 97.024 %/3.497 %, which provided a feasible solution for the arbitrary channel EEG-based MFA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ee关闭了ee文献求助
刚刚
刚刚
1秒前
Hungrylunch给woshiwuziq的求助进行了留言
1秒前
传奇3应助cruise采纳,获得10
1秒前
艺玲发布了新的文献求助10
1秒前
1秒前
我是老大应助sun采纳,获得10
2秒前
柔弱煎饼完成签到,获得积分10
2秒前
SY发布了新的文献求助10
2秒前
暗能量完成签到,获得积分10
2秒前
刘星星完成签到,获得积分10
2秒前
科研通AI5应助yan采纳,获得10
3秒前
蒋念寒发布了新的文献求助10
3秒前
zyp完成签到,获得积分10
3秒前
dldddz完成签到,获得积分10
3秒前
二二二完成签到,获得积分20
3秒前
动听导师发布了新的文献求助10
4秒前
龙潜筱完成签到,获得积分10
4秒前
明天过后完成签到,获得积分10
4秒前
4秒前
在水一方应助weddcf采纳,获得10
4秒前
5秒前
沉默越彬完成签到,获得积分10
5秒前
Nicho发布了新的文献求助10
6秒前
6秒前
蓦然回首完成签到,获得积分10
6秒前
6秒前
Owen应助七大洋的风采纳,获得10
7秒前
7秒前
科研通AI5应助一平采纳,获得80
7秒前
wxwang完成签到,获得积分10
7秒前
廖同学完成签到 ,获得积分10
8秒前
orixero应助李家乐采纳,获得10
8秒前
9秒前
9秒前
lujiajia发布了新的文献求助10
9秒前
10秒前
啊啊啊啊啊叶完成签到 ,获得积分10
10秒前
LLL完成签到 ,获得积分10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678