过电位
电催化剂
双功能
磷化物
电解
分解水
析氧
化学工程
碱性水电解
材料科学
化学
镍
纳米技术
冶金
工程类
电极
催化作用
电化学
物理化学
电解质
光催化
生物化学
作者
Md Ahasan Habib,Rutuja Mandavkar,Shusen Lin,Shalmali Burse,Tasmia Khalid,Mehedi Hasan Joni,Jae‐Hun Jeong,Jihoon Lee
标识
DOI:10.1016/j.cej.2023.142177
摘要
To satisfy the global energy demands and deal with the climate crisis, it is necessary to develop an advanced alternative electrocatalyst for hydrogen generation by water electrolysis, which meets the industrial operational requirements. Herein, the nickel-boride-phosphide (Ni-B-P) micro spheres are fabricated by a hydrothermal approach and significantly improved OER/HER catalytic activities are demonstrated through optimizations of various synthesis parameters. The Ni-B-P sphere electrode demonstrates significantly higher OER performance over the RuO2 benchmark electrode due to the improved charge transfer capacity and large ECSA with the micro spherical morphology and excellent stability and corrosion resistance. The Ni-B-P micro spheres demonstrate the OER overpotential of 360 mV at 300 mA/cm2 as compared to 460 mV of RuO2 benchmark. The bifunctional Ni-B-P sphere electrode readily reaches the high current of 2,000 mA/cm2 with 3.62 and 3.42 V in 1 M and 6 M KOH and demonstrates excellent durability for over 5 days (120-hr) of continuous operation at the high alkaline concentration at elevated temperature, meeting the industrial operation requirement. In addition, coupling with Pt/C (Pt/C ‖ Ni-B-P), the hybrid configuration demonstrates super-low cell voltages of 2.89 and 2.72 V at 2,000 mA/cm2 in 1 M and 6 M KOH with the superior stability, indicating the feasibility of commercial OER application.
科研通智能强力驱动
Strongly Powered by AbleSci AI