化学
电催化剂
电化学
催化作用
路易斯酸
无机化学
氧化还原
电解质
氧化物
铜
法拉第效率
电极
物理化学
有机化学
作者
Chia-Jui Chang,Yi-An Lai,You‐Chiuan Chu,Chun‐Kuo Peng,Hui‐Ying Tan,Chih‐Wen Pao,Yan‐Gu Lin,Sung‐Fu Hung,Hsiao‐Chien Chen,Hao Ming Chen
摘要
Copper-oxide electrocatalysts have been demonstrated to effectively perform the electrochemical CO2 reduction reaction (CO2RR) toward C2+ products, yet preserving the reactive high-valent CuOx has remained elusive. Herein, we demonstrate a model system of Lewis acidic supported Cu electrocatalyst with a pulsed electroreduction method to achieve enhanced performance for C2+ products, in which an optimized electrocatalyst could reach ∼76% Faradaic efficiency for C2+ products (FEC2+) at ∼-0.99 V versus reversible hydrogen electrode, and the corresponding mass activity can be enhanced by ∼2 times as compared to that of conventional CuOx. In situ time-resolved X-ray absorption spectroscopy investigating the dynamic chemical/physical nature of Cu during CO2RR discloses that an activation process induced by the KOH electrolyte during pulsed electroreduction greatly enriched the Cuδ+O/Znδ+O interfaces, which further reveals that the presence of Znδ+O species under the cathodic potential could effectively serve as a Lewis acidic support for preserving the Cuδ+O species to facilitate the formation of C2+ products, and the catalyst structure-property relationship of Cuδ+O/Znδ+O interfaces can be evidently realized. More importantly, we find a universality of stabilizing Cuδ+O species for various metal oxide supports and to provide a general concept of appropriate electrocatalyst-Lewis acidic support interaction for promoting C2+ products.
科研通智能强力驱动
Strongly Powered by AbleSci AI