Implicit-explicit Motion Learning for Video Camouflaged Object Detection

计算机科学 人工智能 计算机视觉 目标检测 运动(物理) 对象(语法) 模式识别(心理学)
作者
Wenjun Hui,Zhenfeng Zhu,Guanghua Gu,Meiqin Liu,Yao Zhao
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:: 1-9
标识
DOI:10.1109/tmm.2024.3361170
摘要

Video camouflaged object detection aims to identify objects that are visually concealed within the surroundings in a video. Most of the existing methods fall into analyzing the implicit inter-frame motion to capture the camouflaged object. However, due to a lack of exploring the prior explicit motion of the camouflaged object, these works generally encounter difficulty in capturing the complete camouflaged object. To address this issue, we propose to integrate implicit and explicit motion learning into a unified framework, namely Im plicit- Ex plicit Motion Learning network (IMEX), for video camouflaged object detection. Specifically, to promote the identifiability of the camouflaged object, a cross-scale representation fusion was proposed for global inter-frame alignment. By establishing cross-scale temporal-spatial association and aggregating the temporal-spatial attentive representations, it also achieves an elimination of the implicit motion of inter-frame to some extent. Moreover, to further improve the discriminability of boundary regions of the detected object, an explicit motion-induced consistency preserving of camouflaged objects is proposed, in which the prior boundary-aware explicit motion field is leveraged to supervise the consistency of camouflaged objects in consecutive frames. Extensive experiments show that our proposed IMEX achieves substantial performance improvements by a large margin.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
KD完成签到,获得积分10
2秒前
科研通AI2S应助Siney采纳,获得10
2秒前
贝肯妮发布了新的文献求助20
2秒前
uuu完成签到 ,获得积分10
3秒前
science完成签到,获得积分10
3秒前
TN完成签到 ,获得积分10
3秒前
4秒前
甜美冷雁完成签到,获得积分10
4秒前
5秒前
柠檬完成签到 ,获得积分10
6秒前
李新悦完成签到,获得积分10
6秒前
123完成签到,获得积分10
9秒前
几酌应助Wellnemo采纳,获得150
9秒前
10秒前
汤姆完成签到,获得积分10
12秒前
12秒前
浮流少年完成签到,获得积分10
12秒前
12秒前
一一应助wangxr采纳,获得20
12秒前
13秒前
14秒前
喜洋洋发布了新的文献求助10
15秒前
丘比特应助哈哈哈哈哈采纳,获得10
15秒前
17秒前
尘埃之影完成签到,获得积分10
17秒前
李健应助ste11ar采纳,获得10
18秒前
田様应助liyuxuan采纳,获得10
20秒前
21秒前
尘烟完成签到,获得积分10
23秒前
Lucas应助杏林靴子采纳,获得10
23秒前
汶溢完成签到,获得积分10
24秒前
芳腻爱学习完成签到,获得积分10
25秒前
啖肉饶舌完成签到,获得积分10
26秒前
83366完成签到,获得积分10
27秒前
27秒前
千年雪松完成签到,获得积分10
28秒前
蝴蝶完成签到 ,获得积分10
28秒前
1257应助阿泮采纳,获得10
29秒前
29秒前
30秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137214
求助须知:如何正确求助?哪些是违规求助? 2788251
关于积分的说明 7785413
捐赠科研通 2444284
什么是DOI,文献DOI怎么找? 1299869
科研通“疑难数据库(出版商)”最低求助积分说明 625639
版权声明 601023