Development of a Distributed Physics-informed Deep Learning Hydrological Model for Data-scarce Regions

数据科学 计算机科学
作者
L. Zhong,Huimin Lei,JIngjing Yang
标识
DOI:10.5194/egusphere-egu24-2850
摘要

Climate change has exacerbated water stress and water-related disasters, necessitating more precise runoff simulations. However, in the majority of global regions, a deficiency of runoff data constitutes a significant constraint on modeling endeavors. Traditional distributed hydrological models and regionalization approaches have shown suboptimal performance. While current data-driven models trained on large datasets excel in spatial extrapolation, the direct applicability of these models in certain regions with unique hydrological processes may be challenging due to the limited representativeness within the training dataset. Furthermore, transfer learning deep learning models pre-trained on large datasets still necessitate local data for retraining, thereby constraining their applicability. To address these challenges, we present a physics-informed deep learning model based on a distributed framework. It involves spatial discretization and the establishment of differentiable hydrological models for discrete sub-basins, coupled with a differentiable Muskingum method for channel routing. By introducing upstream-downstream relationships, model errors in sub-basins propagate through the river network to the watershed outlet, enabling the optimization using limited downstream runoff data, thereby achieving spatial simulation of ungauged internal sub-basins. The model, when trained solely on the downstream-most station, outperforms the distributed hydrological model in runoff simulation at both the training station and upstream stations, as well as evapotranspiration spatial patterns. Compared to transfer learning, our model requires less training data, yet achieves higher precision in simulating runoff on spatially hold-out stations and provides more accurate estimates of spatial evapotranspiration. Consequently, this model offers a novel approach to hydrological simulation in data-scarce regions with unique processes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
healer完成签到,获得积分10
刚刚
芋倪啵啵完成签到 ,获得积分10
1秒前
1秒前
1秒前
crucible完成签到,获得积分10
1秒前
哈哈完成签到,获得积分10
2秒前
充电宝应助HXT采纳,获得10
2秒前
wfy发布了新的文献求助20
2秒前
正直花生发布了新的文献求助10
3秒前
精明思松发布了新的文献求助10
4秒前
友好旭尧发布了新的文献求助10
5秒前
UUU发布了新的文献求助10
5秒前
qiuqiu完成签到,获得积分10
5秒前
KK发布了新的文献求助30
5秒前
核桃小小苏完成签到,获得积分10
6秒前
6秒前
Owen应助yangyangyang采纳,获得10
7秒前
healer发布了新的文献求助10
7秒前
bjbbh完成签到,获得积分10
8秒前
叶音竹发布了新的文献求助10
9秒前
10秒前
youxueting发布了新的文献求助10
12秒前
正直花生完成签到,获得积分10
12秒前
CR7应助丸子采纳,获得20
13秒前
陈成应助123采纳,获得10
13秒前
嘿1111完成签到,获得积分10
13秒前
顾矜应助江南神采纳,获得10
13秒前
猪猪发布了新的文献求助20
14秒前
高兴微笑发布了新的文献求助10
14秒前
14秒前
田様应助chen采纳,获得10
15秒前
15秒前
小西瓜完成签到,获得积分10
15秒前
冰美式发布了新的文献求助10
16秒前
charint完成签到,获得积分10
16秒前
柏林寒冬应助RICK采纳,获得10
18秒前
CodeCraft应助KK采纳,获得10
19秒前
风清扬发布了新的文献求助10
19秒前
吃饱饱发布了新的文献求助10
19秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Atlas of Interventional Pain Management 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4011029
求助须知:如何正确求助?哪些是违规求助? 3550660
关于积分的说明 11306082
捐赠科研通 3284968
什么是DOI,文献DOI怎么找? 1810924
邀请新用户注册赠送积分活动 886594
科研通“疑难数据库(出版商)”最低求助积分说明 811526