Development of a Distributed Physics-informed Deep Learning Hydrological Model for Data-scarce Regions

数据科学 计算机科学
作者
L. Zhong,Huimin Lei,JIngjing Yang
标识
DOI:10.5194/egusphere-egu24-2850
摘要

Climate change has exacerbated water stress and water-related disasters, necessitating more precise runoff simulations. However, in the majority of global regions, a deficiency of runoff data constitutes a significant constraint on modeling endeavors. Traditional distributed hydrological models and regionalization approaches have shown suboptimal performance. While current data-driven models trained on large datasets excel in spatial extrapolation, the direct applicability of these models in certain regions with unique hydrological processes may be challenging due to the limited representativeness within the training dataset. Furthermore, transfer learning deep learning models pre-trained on large datasets still necessitate local data for retraining, thereby constraining their applicability. To address these challenges, we present a physics-informed deep learning model based on a distributed framework. It involves spatial discretization and the establishment of differentiable hydrological models for discrete sub-basins, coupled with a differentiable Muskingum method for channel routing. By introducing upstream-downstream relationships, model errors in sub-basins propagate through the river network to the watershed outlet, enabling the optimization using limited downstream runoff data, thereby achieving spatial simulation of ungauged internal sub-basins. The model, when trained solely on the downstream-most station, outperforms the distributed hydrological model in runoff simulation at both the training station and upstream stations, as well as evapotranspiration spatial patterns. Compared to transfer learning, our model requires less training data, yet achieves higher precision in simulating runoff on spatially hold-out stations and provides more accurate estimates of spatial evapotranspiration. Consequently, this model offers a novel approach to hydrological simulation in data-scarce regions with unique processes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
陈爱佳发布了新的文献求助10
2秒前
carrotleah完成签到,获得积分10
3秒前
skevvecl完成签到,获得积分10
4秒前
lubing完成签到,获得积分20
5秒前
科研小白发布了新的文献求助10
5秒前
曾经电源完成签到,获得积分10
5秒前
酷波er应助勤奋以蓝采纳,获得10
6秒前
小布完成签到 ,获得积分10
6秒前
6秒前
cmc发布了新的文献求助20
6秒前
大模型应助李铮采纳,获得10
6秒前
英姑应助hu采纳,获得10
6秒前
小马甲应助精灵少女采纳,获得10
6秒前
研友rainbow完成签到,获得积分10
7秒前
7秒前
7秒前
阿元完成签到,获得积分10
7秒前
Ls完成签到 ,获得积分10
7秒前
orixero应助輝23采纳,获得10
8秒前
hl268发布了新的文献求助10
8秒前
9秒前
爆米花应助toxin采纳,获得10
9秒前
明天想自律完成签到,获得积分10
9秒前
11秒前
12秒前
江湖棋客完成签到,获得积分10
13秒前
13秒前
乌兰发布了新的文献求助10
14秒前
niuniu完成签到,获得积分10
14秒前
活力遥完成签到,获得积分10
15秒前
小吴完成签到,获得积分20
15秒前
江湖棋客发布了新的文献求助10
16秒前
17秒前
dusum完成签到,获得积分10
17秒前
派大星完成签到,获得积分10
17秒前
wangtongxue发布了新的文献求助10
17秒前
hl268完成签到,获得积分20
18秒前
18秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3152244
求助须知:如何正确求助?哪些是违规求助? 2803512
关于积分的说明 7854215
捐赠科研通 2461077
什么是DOI,文献DOI怎么找? 1310159
科研通“疑难数据库(出版商)”最低求助积分说明 629126
版权声明 601765