Development of a Distributed Physics-informed Deep Learning Hydrological Model for Data-scarce Regions

数据科学 计算机科学
作者
L. Zhong,Huimin Lei,JIngjing Yang
标识
DOI:10.5194/egusphere-egu24-2850
摘要

Climate change has exacerbated water stress and water-related disasters, necessitating more precise runoff simulations. However, in the majority of global regions, a deficiency of runoff data constitutes a significant constraint on modeling endeavors. Traditional distributed hydrological models and regionalization approaches have shown suboptimal performance. While current data-driven models trained on large datasets excel in spatial extrapolation, the direct applicability of these models in certain regions with unique hydrological processes may be challenging due to the limited representativeness within the training dataset. Furthermore, transfer learning deep learning models pre-trained on large datasets still necessitate local data for retraining, thereby constraining their applicability. To address these challenges, we present a physics-informed deep learning model based on a distributed framework. It involves spatial discretization and the establishment of differentiable hydrological models for discrete sub-basins, coupled with a differentiable Muskingum method for channel routing. By introducing upstream-downstream relationships, model errors in sub-basins propagate through the river network to the watershed outlet, enabling the optimization using limited downstream runoff data, thereby achieving spatial simulation of ungauged internal sub-basins. The model, when trained solely on the downstream-most station, outperforms the distributed hydrological model in runoff simulation at both the training station and upstream stations, as well as evapotranspiration spatial patterns. Compared to transfer learning, our model requires less training data, yet achieves higher precision in simulating runoff on spatially hold-out stations and provides more accurate estimates of spatial evapotranspiration. Consequently, this model offers a novel approach to hydrological simulation in data-scarce regions with unique processes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
石头饼完成签到,获得积分10
2秒前
无花果应助zta采纳,获得30
2秒前
2秒前
2秒前
cavi发布了新的文献求助10
2秒前
2秒前
orange9发布了新的文献求助10
4秒前
nifty完成签到,获得积分10
4秒前
4秒前
充电宝应助就爱从黑巧采纳,获得30
5秒前
步步发布了新的文献求助20
5秒前
Young应助毛毛采纳,获得10
5秒前
科研通AI6应助毛毛采纳,获得10
5秒前
6秒前
6秒前
Young应助Dprisk采纳,获得10
6秒前
Folium完成签到,获得积分10
6秒前
小二郎应助gao采纳,获得10
7秒前
Grinde发布了新的文献求助10
7秒前
俏皮晓曼发布了新的文献求助10
7秒前
隐形曼青应助姿姿采纳,获得10
7秒前
July发布了新的文献求助10
7秒前
nini应助球球的铲屎官采纳,获得20
8秒前
8秒前
归尘发布了新的文献求助10
8秒前
8秒前
9秒前
pretzel完成签到,获得积分10
9秒前
大个应助微笑翠桃采纳,获得10
9秒前
阔达远山完成签到,获得积分10
10秒前
li关注了科研通微信公众号
11秒前
lulu发布了新的文献求助10
11秒前
11秒前
11秒前
12秒前
旺旺完成签到,获得积分10
12秒前
科研通AI6应助啦啦王采纳,获得10
12秒前
wangcc完成签到 ,获得积分10
12秒前
12秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5615105
求助须知:如何正确求助?哪些是违规求助? 4700011
关于积分的说明 14906187
捐赠科研通 4741141
什么是DOI,文献DOI怎么找? 2547938
邀请新用户注册赠送积分活动 1511682
关于科研通互助平台的介绍 1473736