亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Development of a Distributed Physics-informed Deep Learning Hydrological Model for Data-scarce Regions

数据科学 计算机科学
作者
L. Zhong,Huimin Lei,JIngjing Yang
标识
DOI:10.5194/egusphere-egu24-2850
摘要

Climate change has exacerbated water stress and water-related disasters, necessitating more precise runoff simulations. However, in the majority of global regions, a deficiency of runoff data constitutes a significant constraint on modeling endeavors. Traditional distributed hydrological models and regionalization approaches have shown suboptimal performance. While current data-driven models trained on large datasets excel in spatial extrapolation, the direct applicability of these models in certain regions with unique hydrological processes may be challenging due to the limited representativeness within the training dataset. Furthermore, transfer learning deep learning models pre-trained on large datasets still necessitate local data for retraining, thereby constraining their applicability. To address these challenges, we present a physics-informed deep learning model based on a distributed framework. It involves spatial discretization and the establishment of differentiable hydrological models for discrete sub-basins, coupled with a differentiable Muskingum method for channel routing. By introducing upstream-downstream relationships, model errors in sub-basins propagate through the river network to the watershed outlet, enabling the optimization using limited downstream runoff data, thereby achieving spatial simulation of ungauged internal sub-basins. The model, when trained solely on the downstream-most station, outperforms the distributed hydrological model in runoff simulation at both the training station and upstream stations, as well as evapotranspiration spatial patterns. Compared to transfer learning, our model requires less training data, yet achieves higher precision in simulating runoff on spatially hold-out stations and provides more accurate estimates of spatial evapotranspiration. Consequently, this model offers a novel approach to hydrological simulation in data-scarce regions with unique processes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
完美世界应助柠檬采纳,获得10
刚刚
1秒前
10秒前
11秒前
柠檬发布了新的文献求助10
15秒前
17秒前
21秒前
柠檬完成签到,获得积分20
25秒前
Criminology34应助ceeray23采纳,获得20
43秒前
44秒前
xu应助ceeray23采纳,获得20
47秒前
null应助科研通管家采纳,获得10
50秒前
null应助科研通管家采纳,获得10
50秒前
null应助科研通管家采纳,获得10
50秒前
null应助科研通管家采纳,获得10
50秒前
null应助科研通管家采纳,获得10
50秒前
null应助科研通管家采纳,获得10
50秒前
浮游应助ceeray23采纳,获得20
50秒前
51秒前
nenoaowu发布了新的文献求助10
55秒前
icoo发布了新的文献求助10
59秒前
852应助nenoaowu采纳,获得10
1分钟前
1分钟前
nenoaowu完成签到,获得积分10
1分钟前
1分钟前
icoo完成签到,获得积分10
1分钟前
1分钟前
1分钟前
2分钟前
肖肖发布了新的文献求助10
2分钟前
ceeray23发布了新的文献求助20
2分钟前
2分钟前
2分钟前
肖肖完成签到,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
null应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
null应助科研通管家采纳,获得10
2分钟前
null应助科研通管家采纳,获得10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Bone Marrow Immunohistochemistry 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5628241
求助须知:如何正确求助?哪些是违规求助? 4716158
关于积分的说明 14963847
捐赠科研通 4785915
什么是DOI,文献DOI怎么找? 2555467
邀请新用户注册赠送积分活动 1516748
关于科研通互助平台的介绍 1477316