Development of a Distributed Physics-informed Deep Learning Hydrological Model for Data-scarce Regions

数据科学 计算机科学
作者
L. Zhong,Huimin Lei,JIngjing Yang
标识
DOI:10.5194/egusphere-egu24-2850
摘要

Climate change has exacerbated water stress and water-related disasters, necessitating more precise runoff simulations. However, in the majority of global regions, a deficiency of runoff data constitutes a significant constraint on modeling endeavors. Traditional distributed hydrological models and regionalization approaches have shown suboptimal performance. While current data-driven models trained on large datasets excel in spatial extrapolation, the direct applicability of these models in certain regions with unique hydrological processes may be challenging due to the limited representativeness within the training dataset. Furthermore, transfer learning deep learning models pre-trained on large datasets still necessitate local data for retraining, thereby constraining their applicability. To address these challenges, we present a physics-informed deep learning model based on a distributed framework. It involves spatial discretization and the establishment of differentiable hydrological models for discrete sub-basins, coupled with a differentiable Muskingum method for channel routing. By introducing upstream-downstream relationships, model errors in sub-basins propagate through the river network to the watershed outlet, enabling the optimization using limited downstream runoff data, thereby achieving spatial simulation of ungauged internal sub-basins. The model, when trained solely on the downstream-most station, outperforms the distributed hydrological model in runoff simulation at both the training station and upstream stations, as well as evapotranspiration spatial patterns. Compared to transfer learning, our model requires less training data, yet achieves higher precision in simulating runoff on spatially hold-out stations and provides more accurate estimates of spatial evapotranspiration. Consequently, this model offers a novel approach to hydrological simulation in data-scarce regions with unique processes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
静宝发布了新的文献求助10
1秒前
星灵完成签到,获得积分10
1秒前
3秒前
穢翼发布了新的文献求助10
3秒前
Halbira发布了新的文献求助10
3秒前
3秒前
4秒前
活力书包完成签到 ,获得积分10
4秒前
4秒前
lii完成签到,获得积分10
6秒前
9秒前
LYJ发布了新的文献求助10
9秒前
9秒前
小小发布了新的文献求助10
10秒前
Hello应助科研通管家采纳,获得10
11秒前
Lucas应助科研通管家采纳,获得10
11秒前
爆米花应助科研通管家采纳,获得10
11秒前
丘比特应助科研通管家采纳,获得10
11秒前
11秒前
华仔应助科研通管家采纳,获得10
11秒前
顾矜应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
11秒前
11秒前
12秒前
AYESHA完成签到,获得积分10
12秒前
Watermanlil发布了新的文献求助10
13秒前
Lucas应助温暖的寄云采纳,获得10
13秒前
JRman完成签到,获得积分10
13秒前
方知发布了新的文献求助10
14秒前
小任性完成签到,获得积分10
15秒前
15秒前
cbrown发布了新的文献求助10
16秒前
17秒前
宣以晴完成签到,获得积分10
17秒前
qingzx完成签到 ,获得积分10
17秒前
18秒前
Ava应助醒醒采纳,获得10
19秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4980088
求助须知:如何正确求助?哪些是违规求助? 4232586
关于积分的说明 13184139
捐赠科研通 4023857
什么是DOI,文献DOI怎么找? 2201488
邀请新用户注册赠送积分活动 1213925
关于科研通互助平台的介绍 1130293