Development of a Distributed Physics-informed Deep Learning Hydrological Model for Data-scarce Regions

数据科学 计算机科学
作者
L. Zhong,Huimin Lei,JIngjing Yang
标识
DOI:10.5194/egusphere-egu24-2850
摘要

Climate change has exacerbated water stress and water-related disasters, necessitating more precise runoff simulations. However, in the majority of global regions, a deficiency of runoff data constitutes a significant constraint on modeling endeavors. Traditional distributed hydrological models and regionalization approaches have shown suboptimal performance. While current data-driven models trained on large datasets excel in spatial extrapolation, the direct applicability of these models in certain regions with unique hydrological processes may be challenging due to the limited representativeness within the training dataset. Furthermore, transfer learning deep learning models pre-trained on large datasets still necessitate local data for retraining, thereby constraining their applicability. To address these challenges, we present a physics-informed deep learning model based on a distributed framework. It involves spatial discretization and the establishment of differentiable hydrological models for discrete sub-basins, coupled with a differentiable Muskingum method for channel routing. By introducing upstream-downstream relationships, model errors in sub-basins propagate through the river network to the watershed outlet, enabling the optimization using limited downstream runoff data, thereby achieving spatial simulation of ungauged internal sub-basins. The model, when trained solely on the downstream-most station, outperforms the distributed hydrological model in runoff simulation at both the training station and upstream stations, as well as evapotranspiration spatial patterns. Compared to transfer learning, our model requires less training data, yet achieves higher precision in simulating runoff on spatially hold-out stations and provides more accurate estimates of spatial evapotranspiration. Consequently, this model offers a novel approach to hydrological simulation in data-scarce regions with unique processes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
稳重的汉堡完成签到,获得积分10
刚刚
倚栏听风发布了新的文献求助10
1秒前
黑暗之神完成签到,获得积分10
1秒前
1秒前
季文婷发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
2秒前
2秒前
Qz发布了新的文献求助10
3秒前
沅芷0871完成签到,获得积分10
3秒前
粉面菜蛋完成签到,获得积分10
3秒前
3秒前
ahsisalah完成签到,获得积分10
3秒前
lyy发布了新的文献求助10
3秒前
bearbiscuit完成签到,获得积分10
4秒前
anastasia完成签到,获得积分10
4秒前
4秒前
Shawn完成签到,获得积分10
4秒前
5秒前
5秒前
KKKK发布了新的文献求助10
5秒前
qwert完成签到,获得积分10
5秒前
普鲁卡因发布了新的文献求助10
5秒前
Iris发布了新的文献求助10
5秒前
黑暗之神发布了新的文献求助10
5秒前
隐形的映波完成签到,获得积分10
5秒前
5秒前
呱呱发布了新的文献求助20
5秒前
5秒前
fwb发布了新的文献求助10
6秒前
散白完成签到,获得积分20
6秒前
Stella应助怡然的乐巧采纳,获得10
6秒前
所所应助tuo zhang采纳,获得10
6秒前
6秒前
平淡的火龙果完成签到,获得积分10
6秒前
dandelion完成签到,获得积分10
7秒前
笑点低的靳完成签到,获得积分10
7秒前
copyaa完成签到,获得积分10
7秒前
呵tui完成签到,获得积分20
7秒前
8秒前
JIAca发布了新的文献求助10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573997
求助须知:如何正确求助?哪些是违规求助? 4660326
关于积分的说明 14728933
捐赠科研通 4600192
什么是DOI,文献DOI怎么找? 2524706
邀请新用户注册赠送积分活动 1495014
关于科研通互助平台的介绍 1465017