清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Development of a Distributed Physics-informed Deep Learning Hydrological Model for Data-scarce Regions

数据科学 计算机科学
作者
L. Zhong,Huimin Lei,JIngjing Yang
标识
DOI:10.5194/egusphere-egu24-2850
摘要

Climate change has exacerbated water stress and water-related disasters, necessitating more precise runoff simulations. However, in the majority of global regions, a deficiency of runoff data constitutes a significant constraint on modeling endeavors. Traditional distributed hydrological models and regionalization approaches have shown suboptimal performance. While current data-driven models trained on large datasets excel in spatial extrapolation, the direct applicability of these models in certain regions with unique hydrological processes may be challenging due to the limited representativeness within the training dataset. Furthermore, transfer learning deep learning models pre-trained on large datasets still necessitate local data for retraining, thereby constraining their applicability. To address these challenges, we present a physics-informed deep learning model based on a distributed framework. It involves spatial discretization and the establishment of differentiable hydrological models for discrete sub-basins, coupled with a differentiable Muskingum method for channel routing. By introducing upstream-downstream relationships, model errors in sub-basins propagate through the river network to the watershed outlet, enabling the optimization using limited downstream runoff data, thereby achieving spatial simulation of ungauged internal sub-basins. The model, when trained solely on the downstream-most station, outperforms the distributed hydrological model in runoff simulation at both the training station and upstream stations, as well as evapotranspiration spatial patterns. Compared to transfer learning, our model requires less training data, yet achieves higher precision in simulating runoff on spatially hold-out stations and provides more accurate estimates of spatial evapotranspiration. Consequently, this model offers a novel approach to hydrological simulation in data-scarce regions with unique processes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ran完成签到 ,获得积分10
10秒前
土豆晴完成签到 ,获得积分10
13秒前
阿白完成签到 ,获得积分10
19秒前
完美世界应助Dr.c采纳,获得10
24秒前
tinneywu完成签到 ,获得积分10
26秒前
SciGPT应助fast采纳,获得10
26秒前
白嫖论文完成签到 ,获得积分10
32秒前
胡萝卜完成签到,获得积分10
33秒前
35秒前
LXx完成签到 ,获得积分10
35秒前
量子星尘发布了新的文献求助10
40秒前
Dr.c发布了新的文献求助10
40秒前
天将明完成签到 ,获得积分10
41秒前
41秒前
alanbike完成签到,获得积分10
42秒前
wefor完成签到 ,获得积分10
44秒前
fast发布了新的文献求助10
45秒前
46秒前
小王发布了新的文献求助10
53秒前
加油完成签到 ,获得积分10
1分钟前
su完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
tttttttt发布了新的文献求助10
1分钟前
mei发布了新的文献求助10
1分钟前
打打应助mei采纳,获得10
1分钟前
1分钟前
偷得浮生半日闲完成签到,获得积分10
1分钟前
mei完成签到,获得积分20
1分钟前
microtsiu完成签到 ,获得积分10
1分钟前
昀颂完成签到 ,获得积分10
1分钟前
zxy发布了新的文献求助10
1分钟前
xianyaoz完成签到 ,获得积分0
1分钟前
yunt完成签到 ,获得积分10
1分钟前
航行天下完成签到 ,获得积分10
1分钟前
属实有点拉胯完成签到 ,获得积分10
2分钟前
涛1完成签到 ,获得积分10
2分钟前
bookgg完成签到 ,获得积分10
2分钟前
完美梨愁完成签到 ,获得积分10
2分钟前
cc完成签到,获得积分10
2分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
徐淮辽南地区新元古代叠层石及生物地层 500
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4021895
求助须知:如何正确求助?哪些是违规求助? 3561963
关于积分的说明 11336685
捐赠科研通 3293858
什么是DOI,文献DOI怎么找? 1814449
邀请新用户注册赠送积分活动 889228
科研通“疑难数据库(出版商)”最低求助积分说明 812838