亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Development of a Distributed Physics-informed Deep Learning Hydrological Model for Data-scarce Regions

数据科学 计算机科学
作者
L. Zhong,Huimin Lei,JIngjing Yang
标识
DOI:10.5194/egusphere-egu24-2850
摘要

Climate change has exacerbated water stress and water-related disasters, necessitating more precise runoff simulations. However, in the majority of global regions, a deficiency of runoff data constitutes a significant constraint on modeling endeavors. Traditional distributed hydrological models and regionalization approaches have shown suboptimal performance. While current data-driven models trained on large datasets excel in spatial extrapolation, the direct applicability of these models in certain regions with unique hydrological processes may be challenging due to the limited representativeness within the training dataset. Furthermore, transfer learning deep learning models pre-trained on large datasets still necessitate local data for retraining, thereby constraining their applicability. To address these challenges, we present a physics-informed deep learning model based on a distributed framework. It involves spatial discretization and the establishment of differentiable hydrological models for discrete sub-basins, coupled with a differentiable Muskingum method for channel routing. By introducing upstream-downstream relationships, model errors in sub-basins propagate through the river network to the watershed outlet, enabling the optimization using limited downstream runoff data, thereby achieving spatial simulation of ungauged internal sub-basins. The model, when trained solely on the downstream-most station, outperforms the distributed hydrological model in runoff simulation at both the training station and upstream stations, as well as evapotranspiration spatial patterns. Compared to transfer learning, our model requires less training data, yet achieves higher precision in simulating runoff on spatially hold-out stations and provides more accurate estimates of spatial evapotranspiration. Consequently, this model offers a novel approach to hydrological simulation in data-scarce regions with unique processes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
火星的雪完成签到 ,获得积分0
14秒前
九千七完成签到 ,获得积分10
40秒前
48秒前
1分钟前
swg发布了新的文献求助10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
2分钟前
nannan完成签到 ,获得积分10
2分钟前
小马甲应助sunshine采纳,获得30
2分钟前
2分钟前
碧蓝的万宝路完成签到 ,获得积分10
2分钟前
千里草发布了新的文献求助10
2分钟前
sunshine发布了新的文献求助30
2分钟前
2分钟前
无花果应助Sience采纳,获得10
3分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
Sience发布了新的文献求助10
3分钟前
3分钟前
3分钟前
lalala完成签到,获得积分10
4分钟前
祖宛凝完成签到,获得积分10
4分钟前
4分钟前
张秋贤完成签到,获得积分10
4分钟前
陈如馨发布了新的文献求助10
4分钟前
4分钟前
JamesPei应助hms采纳,获得10
4分钟前
swg发布了新的文献求助10
4分钟前
曹官子完成签到 ,获得积分10
5分钟前
5分钟前
量子星尘发布了新的文献求助10
5分钟前
6分钟前
hms完成签到 ,获得积分10
6分钟前
hms发布了新的文献求助10
6分钟前
孙孙应助科研通管家采纳,获得10
7分钟前
孙孙应助科研通管家采纳,获得10
7分钟前
严珍珍完成签到 ,获得积分10
7分钟前
量子星尘发布了新的文献求助10
7分钟前
简因完成签到 ,获得积分10
9分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
Inherited Metabolic Disease in Adults: A Clinical Guide 500
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4611884
求助须知:如何正确求助?哪些是违规求助? 4017289
关于积分的说明 12436182
捐赠科研通 3699253
什么是DOI,文献DOI怎么找? 2040064
邀请新用户注册赠送积分活动 1072855
科研通“疑难数据库(出版商)”最低求助积分说明 956546