Development of a Distributed Physics-informed Deep Learning Hydrological Model for Data-scarce Regions

数据科学 计算机科学
作者
L. Zhong,Huimin Lei,JIngjing Yang
标识
DOI:10.5194/egusphere-egu24-2850
摘要

Climate change has exacerbated water stress and water-related disasters, necessitating more precise runoff simulations. However, in the majority of global regions, a deficiency of runoff data constitutes a significant constraint on modeling endeavors. Traditional distributed hydrological models and regionalization approaches have shown suboptimal performance. While current data-driven models trained on large datasets excel in spatial extrapolation, the direct applicability of these models in certain regions with unique hydrological processes may be challenging due to the limited representativeness within the training dataset. Furthermore, transfer learning deep learning models pre-trained on large datasets still necessitate local data for retraining, thereby constraining their applicability. To address these challenges, we present a physics-informed deep learning model based on a distributed framework. It involves spatial discretization and the establishment of differentiable hydrological models for discrete sub-basins, coupled with a differentiable Muskingum method for channel routing. By introducing upstream-downstream relationships, model errors in sub-basins propagate through the river network to the watershed outlet, enabling the optimization using limited downstream runoff data, thereby achieving spatial simulation of ungauged internal sub-basins. The model, when trained solely on the downstream-most station, outperforms the distributed hydrological model in runoff simulation at both the training station and upstream stations, as well as evapotranspiration spatial patterns. Compared to transfer learning, our model requires less training data, yet achieves higher precision in simulating runoff on spatially hold-out stations and provides more accurate estimates of spatial evapotranspiration. Consequently, this model offers a novel approach to hydrological simulation in data-scarce regions with unique processes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
打打应助wei-zeng采纳,获得10
1秒前
张群完成签到,获得积分10
1秒前
wanci应助un采纳,获得10
1秒前
1秒前
wuyuzegang完成签到,获得积分0
2秒前
慕青应助曾经二娘采纳,获得10
3秒前
paper reader完成签到,获得积分10
3秒前
4秒前
鱼yuyu完成签到,获得积分10
4秒前
4秒前
李爱国应助亓大大采纳,获得10
4秒前
4秒前
小邓发布了新的文献求助10
5秒前
5秒前
15134786587发布了新的文献求助10
5秒前
hanjja完成签到,获得积分20
6秒前
6秒前
月亮完成签到,获得积分10
6秒前
June完成签到 ,获得积分10
6秒前
6秒前
6秒前
在水一方应助sky采纳,获得10
7秒前
paper reader发布了新的文献求助10
8秒前
8秒前
dadadaniu完成签到,获得积分10
8秒前
乐乐应助悲伤汉堡包采纳,获得10
8秒前
8秒前
大模型应助呵呵呵采纳,获得10
8秒前
坦率铅笔发布了新的文献求助10
9秒前
9秒前
帅哥牛紫完成签到,获得积分10
9秒前
圆滑的铁勺完成签到,获得积分10
10秒前
咚咚完成签到 ,获得积分10
10秒前
隐形白亦发布了新的文献求助10
11秒前
兔子发布了新的文献求助10
11秒前
启蒙与追索完成签到 ,获得积分10
11秒前
www完成签到,获得积分10
12秒前
雾里青发布了新的文献求助10
12秒前
12秒前
小邓完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5624710
求助须知:如何正确求助?哪些是违规求助? 4710500
关于积分的说明 14951127
捐赠科研通 4778615
什么是DOI,文献DOI怎么找? 2553367
邀请新用户注册赠送积分活动 1515328
关于科研通互助平台的介绍 1475603