Development of a Distributed Physics-informed Deep Learning Hydrological Model for Data-scarce Regions

数据科学 计算机科学
作者
L. Zhong,Huimin Lei,JIngjing Yang
标识
DOI:10.5194/egusphere-egu24-2850
摘要

Climate change has exacerbated water stress and water-related disasters, necessitating more precise runoff simulations. However, in the majority of global regions, a deficiency of runoff data constitutes a significant constraint on modeling endeavors. Traditional distributed hydrological models and regionalization approaches have shown suboptimal performance. While current data-driven models trained on large datasets excel in spatial extrapolation, the direct applicability of these models in certain regions with unique hydrological processes may be challenging due to the limited representativeness within the training dataset. Furthermore, transfer learning deep learning models pre-trained on large datasets still necessitate local data for retraining, thereby constraining their applicability. To address these challenges, we present a physics-informed deep learning model based on a distributed framework. It involves spatial discretization and the establishment of differentiable hydrological models for discrete sub-basins, coupled with a differentiable Muskingum method for channel routing. By introducing upstream-downstream relationships, model errors in sub-basins propagate through the river network to the watershed outlet, enabling the optimization using limited downstream runoff data, thereby achieving spatial simulation of ungauged internal sub-basins. The model, when trained solely on the downstream-most station, outperforms the distributed hydrological model in runoff simulation at both the training station and upstream stations, as well as evapotranspiration spatial patterns. Compared to transfer learning, our model requires less training data, yet achieves higher precision in simulating runoff on spatially hold-out stations and provides more accurate estimates of spatial evapotranspiration. Consequently, this model offers a novel approach to hydrological simulation in data-scarce regions with unique processes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
speed完成签到 ,获得积分10
刚刚
RYK完成签到 ,获得积分10
1秒前
2秒前
cm发布了新的文献求助10
6秒前
8秒前
8秒前
8秒前
8秒前
8秒前
大力水手完成签到,获得积分0
10秒前
12秒前
cm完成签到,获得积分10
14秒前
酷炫的听枫完成签到 ,获得积分10
15秒前
吱吱吱完成签到 ,获得积分10
16秒前
17秒前
上善若水呦完成签到 ,获得积分10
17秒前
小羡完成签到 ,获得积分10
17秒前
cqwswfl完成签到 ,获得积分20
18秒前
南山无梅落完成签到,获得积分10
19秒前
啵妞完成签到 ,获得积分10
19秒前
上官若男应助qiqi采纳,获得30
21秒前
拼搏的潘子完成签到,获得积分10
22秒前
zsj完成签到,获得积分10
23秒前
dolesy发布了新的文献求助10
24秒前
执着烧鹅完成签到 ,获得积分10
24秒前
哈哈哈完成签到,获得积分10
26秒前
yar应助博修采纳,获得10
28秒前
可爱的函函应助博修采纳,获得10
28秒前
MchemG应助博修采纳,获得10
28秒前
酷波er应助博修采纳,获得10
29秒前
时代更迭完成签到 ,获得积分10
29秒前
30秒前
WGOIST完成签到,获得积分10
31秒前
九九完成签到 ,获得积分10
31秒前
李新宇完成签到 ,获得积分10
32秒前
大橙子发布了新的文献求助10
36秒前
库凯伊完成签到,获得积分10
36秒前
duckspy发布了新的文献求助10
37秒前
CodeCraft应助jenny采纳,获得10
39秒前
lhnsisi完成签到,获得积分10
40秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038157
求助须知:如何正确求助?哪些是违规求助? 3575869
关于积分的说明 11373842
捐赠科研通 3305650
什么是DOI,文献DOI怎么找? 1819255
邀请新用户注册赠送积分活动 892655
科研通“疑难数据库(出版商)”最低求助积分说明 815022