Dual-side Adversarial Learning based Fair Recommendation for Sensitive Attribute Filtering

计算机科学 对抗制 推荐系统 滤波器(信号处理) 过程(计算) 机器学习 对偶(语法数字) 人工智能 数据挖掘 情报检索 计算机视觉 操作系统 文学类 艺术
作者
Shenghao Liu,Y Zhang,Lingzhi Yi,Xianjun Deng,Laurence T. Yang,Bang Wang
出处
期刊:ACM Transactions on Knowledge Discovery From Data [Association for Computing Machinery]
卷期号:18 (7): 1-20
标识
DOI:10.1145/3648683
摘要

With the development of recommendation algorithms, researchers are paying increasing attention to fairness issues such as user discrimination in recommendations. To address these issues, existing works often filter users’ sensitive information that may cause discrimination during the process of learning user representations. However, these approaches overlook the latent relationship between items’ content attributes and users’ sensitive information. In this article, we propose DALFRec, a fairness-aware recommendation algorithm based on user-side and item-side adversarial learning to mitigate the effects of sensitive information on both sides of the recommendation process. First, we conduct a statistical analysis to demonstrate the latent relationship between items’ information and users’ sensitive attributes. Then, we design a dual-side adversarial learning network that simultaneously filters out users’ sensitive information on the user and item side. Additionally, we propose a new evaluation strategy that leverages the latent relationship between items’ content attributes and users’ sensitive attributes to better assess the algorithm’s ability to reduce discrimination. Our experiments on three real datasets demonstrate the superiority of our proposed algorithm over state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
哩哩哩完成签到,获得积分10
1秒前
1秒前
孙一一发布了新的文献求助10
2秒前
我是老大应助Ihang采纳,获得10
2秒前
yaoyao完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助20
2秒前
4秒前
4秒前
科研小亮完成签到,获得积分20
5秒前
6秒前
6秒前
6秒前
科研通AI6应助沉静的惠采纳,获得10
7秒前
情怀应助yaoyao采纳,获得10
8秒前
今昔完成签到 ,获得积分10
9秒前
村里傻小子完成签到,获得积分10
9秒前
喜文完成签到 ,获得积分10
9秒前
aoyo发布了新的文献求助20
10秒前
10秒前
Jasper应助秋之月采纳,获得20
11秒前
云端梦境发布了新的文献求助10
11秒前
飞飞发布了新的文献求助10
11秒前
扬灵兮完成签到,获得积分10
12秒前
12秒前
13秒前
ganxinran发布了新的文献求助10
13秒前
Duha完成签到,获得积分10
14秒前
量子星尘发布了新的文献求助10
14秒前
14秒前
FashionBoy应助扬灵兮采纳,获得10
16秒前
跳跃的煜祺完成签到,获得积分10
16秒前
17秒前
17秒前
ding应助刻苦秋烟采纳,获得10
17秒前
18秒前
欣妹儿发布了新的文献求助10
18秒前
Jasper应助wsqg123采纳,获得10
18秒前
飞飞完成签到,获得积分10
18秒前
18秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5082475
求助须知:如何正确求助?哪些是违规求助? 4299854
关于积分的说明 13397214
捐赠科研通 4123637
什么是DOI,文献DOI怎么找? 2258551
邀请新用户注册赠送积分活动 1262782
关于科研通互助平台的介绍 1196720