Quantization Aware Attack: Enhancing Transferable Adversarial Attacks by Model Quantization

计算机科学 量化(信号处理) 对抗制 计算机安全 人工智能 算法
作者
Yi Yang,Chenhao Lin,Qian Li,Zhengyu Zhao,Hua Fan,Dawei Zhou,Nannan Wang,Tongliang Liu,Chao Shen
出处
期刊:IEEE Transactions on Information Forensics and Security [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tifs.2024.3360891
摘要

Quantized neural networks (QNNs) have received increasing attention in resource-constrained scenarios due to their exceptional generalizability. However, their robustness against realistic black-box adversarial attacks has not been extensively studied. In this scenario, adversarial transferability is pursued across QNNs with different quantization bitwidths, which particularly involve unknown architectures and defense methods. Previous studies claim that transferability is difficult to achieve across QNNs with different bitwidths on the condition that they share the same architecture. However, we discover that under different architectures, transferability can be largely improved by using a QNN quantized with an extremely low bitwidth as the substitute model. We further improve the attack transferability by proposing quantization aware attack (QAA), which fine-tunes a QNN substitute model with a multiple-bitwidth training objective. In particular, we demonstrate that QAA addresses the two issues that are commonly known to hinder transferability: 1) quantization shifts and 2) gradient misalignments. Extensive experimental results validate the high transferability of the QAA to diverse target models. For instance, when adopting the ResNet-34 substitute model on ImageNet, QAA outperforms the current best attack in attacking standardly trained DNNs, adversarially trained DNNs, and QNNs with varied bitwidths by 4.6% ~ 20.9%, 8.8% ~ 13.4%, and 2.6% ~ 11.8% (absolute), respectively. In addition, QAA is efficient since it only takes one epoch for fine-tuning. In the end, we empirically explain the effectiveness of QAA from the view of the loss landscape. Our code is available at https://github.com/yyl-github-1896/QAA/.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李浓发布了新的文献求助10
1秒前
3秒前
秀丽的芹菜完成签到,获得积分10
4秒前
zxx完成签到 ,获得积分10
4秒前
杳鸢完成签到,获得积分10
5秒前
NexusExplorer应助aike采纳,获得10
5秒前
机智的思远完成签到 ,获得积分10
6秒前
6秒前
7秒前
8秒前
李浓完成签到,获得积分10
8秒前
小蘑菇应助一一采纳,获得10
10秒前
甜甜完成签到,获得积分10
10秒前
10秒前
苏木发布了新的文献求助100
11秒前
12秒前
ww关闭了ww文献求助
12秒前
tt825发布了新的文献求助30
12秒前
赵雄伟发布了新的文献求助10
13秒前
15秒前
星辰大海应助倔强毛驴侠采纳,获得10
15秒前
mysoul123完成签到 ,获得积分10
16秒前
裕安完成签到,获得积分10
17秒前
tjfwg完成签到,获得积分10
18秒前
火山完成签到 ,获得积分10
18秒前
19秒前
19秒前
獭獭发布了新的文献求助10
20秒前
20秒前
拉长的凌旋完成签到,获得积分10
21秒前
21秒前
勤恳风华完成签到,获得积分10
22秒前
冷酷紫山发布了新的文献求助10
24秒前
生动的豪英完成签到 ,获得积分10
24秒前
summer完成签到 ,获得积分10
25秒前
25秒前
米花完成签到 ,获得积分10
25秒前
金也发布了新的文献求助30
25秒前
aike发布了新的文献求助10
26秒前
七羽完成签到 ,获得积分10
28秒前
高分求助中
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
Die Gottesanbeterin: Mantis religiosa: 656 400
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3165286
求助须知:如何正确求助?哪些是违规求助? 2816322
关于积分的说明 7912245
捐赠科研通 2475959
什么是DOI,文献DOI怎么找? 1318465
科研通“疑难数据库(出版商)”最低求助积分说明 632171
版权声明 602388