Subject-Independent Continuous Estimation of sEMG-Based Joint Angles Using Both Multisource Domain Adaptation and BP Neural Network

外骨骼 人工智能 人工神经网络 模式识别(心理学) 反向传播 计算机科学 不变(物理) 数学 模拟 数学物理
作者
He Li,Shuxiang Guo,Hanze Wang,Dongdong Bu
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-10 被引量:4
标识
DOI:10.1109/tim.2022.3225015
摘要

Continuous angle estimation from surface electromyography (sEMG) is crucial for robot-assisted upper limb rehabilitation. The sEMG-based control provides an optimal way to achieve harmonic interactions between subjects and upper limb rehabilitation exoskeletons. Also, for upper limb exoskeleton systems with sEMG as the control signal, accurate identification of elbow angles from sEMG is essential. However, sEMG signals have a subject-specific nature, causing the estimation model with sEMG signals as input to have poor generalization across multiple subjects. Aiming at the above problem of intersubject variability on sEMG, multisource domain adaptation (MDA) is combined into the estimation of continuous joint movements to obtain subject-invariant features of sEMG. Also, the feature distribution of the training set and test set is evaluated using the kernel density estimation (KDE) method. Furthermore, the subject-invariant features obtained through MDA are the input of the backpropagation neural network (BPNN). Different evaluation indicators and the statistical method are used to compare the estimation results between original features and subject-invariant features, which proves the better generalization ability of the model based on subject-invariant features. Also, the estimation angle error calculated by using subject-invariant features as the input of BPNN is controlled within 10°, which shows the effectiveness of the combination of MDA and shallow neural network for the accurate subject-independent estimation of elbow joint continuous movements.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
明理剑心发布了新的文献求助30
1秒前
2秒前
阳光香完成签到,获得积分10
2秒前
zdl完成签到,获得积分10
3秒前
3秒前
慧敏发布了新的文献求助10
3秒前
3秒前
SciGPT应助gjy采纳,获得10
4秒前
晚湖完成签到,获得积分20
4秒前
4秒前
5秒前
5秒前
an发布了新的文献求助10
5秒前
6秒前
科研通AI2S应助干净的井采纳,获得10
7秒前
陶醉琳发布了新的文献求助10
7秒前
咖喱鸡发布了新的文献求助10
7秒前
南乾硕发布了新的文献求助10
7秒前
8秒前
8秒前
阳光香发布了新的文献求助10
8秒前
景自端完成签到,获得积分10
8秒前
avenue发布了新的文献求助10
8秒前
隐形曼青应助酷炫的菠萝采纳,获得10
9秒前
所所应助积极孤菱采纳,获得10
9秒前
M2106发布了新的文献求助10
9秒前
CipherSage应助贺岚采纳,获得10
9秒前
科研通AI2S应助zz采纳,获得10
10秒前
10秒前
yiling发布了新的文献求助30
10秒前
贰鸟应助拼搏的思卉采纳,获得20
10秒前
慧敏完成签到,获得积分10
11秒前
科研文献搬运工应助aoaoao采纳,获得30
11秒前
共享精神应助fcc采纳,获得10
12秒前
小黑是个甜仔完成签到,获得积分20
12秒前
顺利的伊应助Barton采纳,获得10
12秒前
13秒前
Hannahcx发布了新的文献求助10
13秒前
木子李发布了新的文献求助10
13秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
A new approach of magnetic circular dichroism to the electronic state analysis of intact photosynthetic pigments 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148568
求助须知:如何正确求助?哪些是违规求助? 2799708
关于积分的说明 7836427
捐赠科研通 2457069
什么是DOI,文献DOI怎么找? 1307711
科研通“疑难数据库(出版商)”最低求助积分说明 628247
版权声明 601663