Subject-Independent Continuous Estimation of sEMG-Based Joint Angles Using Both Multisource Domain Adaptation and BP Neural Network

外骨骼 人工智能 人工神经网络 模式识别(心理学) 反向传播 计算机科学 不变(物理) 一般化 语音识别 数学 模拟 数学物理 数学分析
作者
He Li,Shuxiang Guo,Hanze Wang,Dongdong Bu
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-10 被引量:9
标识
DOI:10.1109/tim.2022.3225015
摘要

Continuous angle estimation from surface electromyography (sEMG) is crucial for robot-assisted upper limb rehabilitation. The sEMG-based control provides an optimal way to achieve harmonic interactions between subjects and upper limb rehabilitation exoskeletons. Also, for upper limb exoskeleton systems with sEMG as the control signal, accurate identification of elbow angles from sEMG is essential. However, sEMG signals have a subject-specific nature, causing the estimation model with sEMG signals as input to have poor generalization across multiple subjects. Aiming at the above problem of intersubject variability on sEMG, multisource domain adaptation (MDA) is combined into the estimation of continuous joint movements to obtain subject-invariant features of sEMG. Also, the feature distribution of the training set and test set is evaluated using the kernel density estimation (KDE) method. Furthermore, the subject-invariant features obtained through MDA are the input of the backpropagation neural network (BPNN). Different evaluation indicators and the statistical method are used to compare the estimation results between original features and subject-invariant features, which proves the better generalization ability of the model based on subject-invariant features. Also, the estimation angle error calculated by using subject-invariant features as the input of BPNN is controlled within 10°, which shows the effectiveness of the combination of MDA and shallow neural network for the accurate subject-independent estimation of elbow joint continuous movements.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
光亮向露完成签到,获得积分10
刚刚
zoe完成签到,获得积分10
刚刚
swj发布了新的文献求助10
刚刚
王雪完成签到,获得积分10
1秒前
搜集达人应助gsdrv采纳,获得10
1秒前
Da完成签到,获得积分10
2秒前
过时的电灯胆完成签到 ,获得积分10
2秒前
2秒前
3秒前
3秒前
3秒前
slimayw12发布了新的文献求助10
3秒前
香蕉觅云应助苏柏亚采纳,获得10
3秒前
4秒前
李健的小迷弟应助杨阳洋采纳,获得10
4秒前
科学家发布了新的文献求助10
4秒前
lyabigale完成签到 ,获得积分10
4秒前
杨一完成签到 ,获得积分10
4秒前
123发布了新的文献求助10
4秒前
天天摸鱼完成签到,获得积分10
4秒前
Hello应助搞怪绿柳采纳,获得10
4秒前
何洁完成签到,获得积分10
4秒前
5秒前
希望天下0贩的0应助nana湘采纳,获得10
5秒前
SciGPT应助Liury采纳,获得10
5秒前
ww完成签到,获得积分10
5秒前
科研通AI2S应助DI采纳,获得10
5秒前
量子星尘发布了新的文献求助10
5秒前
kagami应助小李采纳,获得30
6秒前
7秒前
7秒前
自信的竹员外完成签到,获得积分10
7秒前
7秒前
7秒前
dou完成签到,获得积分10
7秒前
飞太难完成签到,获得积分10
8秒前
闫佳美发布了新的文献求助10
9秒前
阿牛完成签到,获得积分10
9秒前
9秒前
英吉利25发布了新的文献求助10
10秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009462
求助须知:如何正确求助?哪些是违规求助? 3549388
关于积分的说明 11301996
捐赠科研通 3283894
什么是DOI,文献DOI怎么找? 1810448
邀请新用户注册赠送积分活动 886287
科研通“疑难数据库(出版商)”最低求助积分说明 811316