Subject-Independent Continuous Estimation of sEMG-Based Joint Angles Using Both Multisource Domain Adaptation and BP Neural Network

外骨骼 人工智能 人工神经网络 模式识别(心理学) 反向传播 计算机科学 不变(物理) 数学 模拟 数学物理
作者
He Li,Shuxiang Guo,Hanze Wang,Dongdong Bu
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-10 被引量:4
标识
DOI:10.1109/tim.2022.3225015
摘要

Continuous angle estimation from surface electromyography (sEMG) is crucial for robot-assisted upper limb rehabilitation. The sEMG-based control provides an optimal way to achieve harmonic interactions between subjects and upper limb rehabilitation exoskeletons. Also, for upper limb exoskeleton systems with sEMG as the control signal, accurate identification of elbow angles from sEMG is essential. However, sEMG signals have a subject-specific nature, causing the estimation model with sEMG signals as input to have poor generalization across multiple subjects. Aiming at the above problem of intersubject variability on sEMG, multisource domain adaptation (MDA) is combined into the estimation of continuous joint movements to obtain subject-invariant features of sEMG. Also, the feature distribution of the training set and test set is evaluated using the kernel density estimation (KDE) method. Furthermore, the subject-invariant features obtained through MDA are the input of the backpropagation neural network (BPNN). Different evaluation indicators and the statistical method are used to compare the estimation results between original features and subject-invariant features, which proves the better generalization ability of the model based on subject-invariant features. Also, the estimation angle error calculated by using subject-invariant features as the input of BPNN is controlled within 10°, which shows the effectiveness of the combination of MDA and shallow neural network for the accurate subject-independent estimation of elbow joint continuous movements.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
萌道完成签到,获得积分20
1秒前
thanhmanhp完成签到,获得积分10
1秒前
doudou发布了新的文献求助10
1秒前
1秒前
有风完成签到,获得积分10
1秒前
tk完成签到 ,获得积分10
2秒前
2秒前
大模型应助蜡笔采纳,获得30
2秒前
liu发布了新的文献求助10
2秒前
完美世界应助咳咳采纳,获得10
3秒前
3秒前
哒哒完成签到,获得积分10
3秒前
李健春完成签到 ,获得积分10
3秒前
ding应助小文采纳,获得10
3秒前
3秒前
4秒前
99完成签到,获得积分10
4秒前
隐形曼青应助迅速的夏兰采纳,获得20
4秒前
Muse完成签到 ,获得积分10
5秒前
圈圈发布了新的文献求助10
5秒前
打打应助时尚的蚂蚁采纳,获得10
6秒前
贾文斌完成签到,获得积分10
6秒前
chinning发布了新的文献求助10
6秒前
完美世界应助wangn采纳,获得10
7秒前
Mid完成签到,获得积分20
7秒前
共享精神应助Morgenstern_ZH采纳,获得10
7秒前
7秒前
7秒前
搞怪画笔完成签到 ,获得积分10
7秒前
皇城有饭局完成签到,获得积分10
7秒前
lvanlvan完成签到,获得积分10
7秒前
哲999发布了新的文献求助10
8秒前
Jadie完成签到,获得积分10
8秒前
8秒前
morlison发布了新的文献求助10
8秒前
8秒前
无花果应助佳佳采纳,获得10
8秒前
无花果应助nn采纳,获得10
9秒前
置默完成签到,获得积分10
9秒前
gww完成签到,获得积分20
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759