Skeleton-Based Action Recognition Through Contrasting Two-Stream Spatial-Temporal Networks

计算机科学 人工智能 模式识别(心理学) 变压器 光学(聚焦) 图形 动作识别 卷积(计算机科学) 理论计算机科学 人工神经网络 物理 量子力学 电压 光学 班级(哲学)
作者
Chen Pang,Xuequan Lu,Lei Lyu
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:25: 8699-8711 被引量:1
标识
DOI:10.1109/tmm.2023.3239751
摘要

For pursuing accurate skeleton-based action recognition, most prior methods use the strategy of combining Graph Convolution Networks (GCNs) with attention-based methods in a serial way. However, they regard the human skeleton as a complete graph, resulting in less variations between different actions (e.g., the connection between the elbow and head in action “clapping hands”). For this, we propose a novel Contrastive GCN-Transformer Network (ConGT) which fuses the spatial and temporal modules in a parallel way. The ConGT involves two parallel streams: Spatial-Temporal Graph Convolution stream (STG) and Spatial-Temporal Transformer stream (STT). The STG is designed to obtain action representations maintaining the natural topology structure of the human skeleton. The STT is devised to acquire action representations containing the global relationships among joints. Since the action representations produced from these two streams contain different characteristics, and each of them knows little information of the other, we introduce the contrastive learning paradigm to guide their output representations of the same sample to be as close as possible in a self-supervised manner. Through the contrastive learning, they can learn information from each other to enrich the action features by maximizing the mutual information between the two types of action representations. To further improve action recognition accuracy, we introduce the Cyclical Focal Loss (CFL) which can focus on confident training samples in early training epochs, with an increasing focus on hard samples during the middle epochs. We conduct experiments on three benchmark datasets, which demonstrate that our model achieves state-of-the-art performance in action recognition.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
puke完成签到,获得积分20
3秒前
大胆洋葱发布了新的文献求助10
4秒前
4秒前
lanvinnn阿银完成签到,获得积分10
7秒前
lfl发布了新的文献求助10
7秒前
共享精神应助LiLi采纳,获得10
7秒前
zhw发布了新的文献求助30
9秒前
雨诺完成签到,获得积分10
10秒前
勤恳书包完成签到,获得积分10
10秒前
10秒前
调皮秋完成签到,获得积分20
10秒前
脑洞疼应助山居剑意采纳,获得10
11秒前
lfl完成签到,获得积分10
13秒前
mei发布了新的文献求助30
13秒前
li发布了新的文献求助10
14秒前
桐桐应助霸气小蘑菇采纳,获得30
15秒前
15秒前
16秒前
yi完成签到,获得积分10
17秒前
赘婿应助泉水叮咚采纳,获得20
19秒前
啤酒白菜完成签到,获得积分10
22秒前
22秒前
充电宝应助妩媚的尔阳采纳,获得10
25秒前
28秒前
ha完成签到 ,获得积分10
29秒前
超级的绿凝完成签到 ,获得积分10
30秒前
星辰大海应助ww采纳,获得10
31秒前
季生完成签到,获得积分10
31秒前
1257应助城南徐师傅采纳,获得10
32秒前
Obliviate完成签到,获得积分10
32秒前
桐桐应助妮妮采纳,获得10
32秒前
34秒前
35秒前
高兴的半仙完成签到,获得积分10
35秒前
36秒前
山居剑意发布了新的文献求助10
38秒前
38秒前
39秒前
魈maker完成签到,获得积分10
40秒前
ww发布了新的文献求助10
42秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3151919
求助须知:如何正确求助?哪些是违规求助? 2803228
关于积分的说明 7852576
捐赠科研通 2460608
什么是DOI,文献DOI怎么找? 1309955
科研通“疑难数据库(出版商)”最低求助积分说明 629070
版权声明 601760