Archimedes Optimization Algorithm with Deep Learning-Based Prostate Cancer Classification on Magnetic Resonance Imaging

人工智能 计算机科学 支持向量机 水准点(测量) 机器学习 鉴定(生物学) 前列腺癌 算法 数据挖掘 模式识别(心理学) 癌症 医学 生物 内科学 植物 大地测量学 地理
作者
Mahmoud Ragab,Faris Kateb,E. K. El-Sawy,Sami Saeed Binyamin,Mohammed W. Al-Rabia,Rasha A. Mansouri
出处
期刊:Healthcare [MDPI AG]
卷期号:11 (4): 590-590 被引量:6
标识
DOI:10.3390/healthcare11040590
摘要

Prostate cancer (PCa) is becoming one of the most frequently occurring cancers among men and causes an even greater number of deaths. Due to the complexity of tumor masses, radiologists find it difficult to identify PCa accurately. Over the years, several PCa-detecting methods have been formulated, but these methods cannot identify cancer efficiently. Artificial Intelligence (AI) has both information technologies that simulate natural or biological phenomena and human intelligence in addressing issues. AI technologies have been broadly implemented in the healthcare domain, including 3D printing, disease diagnosis, health monitoring, hospital scheduling, clinical decision support, classification and prediction, and medical data analysis. These applications significantly boost the cost-effectiveness and accuracy of healthcare services. This article introduces an Archimedes Optimization Algorithm with Deep Learning-based Prostate Cancer Classification (AOADLB-P2C) model on MRI images. The presented AOADLB-P2C model examines MRI images for the identification of PCa. To accomplish this, the AOADLB-P2C model performs pre-processing in two stages: adaptive median filtering (AMF)-based noise removal and contrast enhancement. Additionally, the presented AOADLB-P2C model extracts features via a densely connected network (DenseNet-161) model with a root-mean-square propagation (RMSProp) optimizer. Finally, the presented AOADLB-P2C model classifies PCa using the AOA with a least-squares support vector machine (LS-SVM) method. The simulation values of the presented AOADLB-P2C model are tested using a benchmark MRI dataset. The comparative experimental results demonstrate the improvements of the AOADLB-P2C model over other recent approaches.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
卡恩完成签到 ,获得积分10
1秒前
2秒前
在水一方应助Mzb采纳,获得10
3秒前
纸猫发布了新的文献求助10
3秒前
4秒前
顾矜应助潇潇雨歇采纳,获得10
5秒前
5秒前
5秒前
分工合作发布了新的文献求助10
5秒前
6秒前
上官若男应助神勇葵阴采纳,获得10
7秒前
费费发布了新的文献求助20
8秒前
Jim发布了新的文献求助10
9秒前
云中鹤发布了新的文献求助10
9秒前
10秒前
10秒前
ComVivas发布了新的文献求助30
11秒前
忧郁芝发布了新的文献求助10
11秒前
靓丽的芝麻完成签到,获得积分10
13秒前
wengjiaqi完成签到,获得积分10
13秒前
Hello应助麦饭采纳,获得10
13秒前
qiu发布了新的文献求助10
14秒前
14秒前
婷婷完成签到,获得积分10
16秒前
指尖留不住温柔关注了科研通微信公众号
16秒前
17秒前
cjh关注了科研通微信公众号
18秒前
研友_8KX15L完成签到,获得积分10
18秒前
落后从阳发布了新的文献求助10
20秒前
20秒前
zhang发布了新的文献求助30
22秒前
所所应助Ding采纳,获得10
23秒前
kiki发布了新的文献求助10
27秒前
27秒前
平常的毛豆应助124332采纳,获得10
27秒前
cocolu应助124332采纳,获得10
28秒前
cocolu应助124332采纳,获得10
28秒前
大观天下发布了新的文献求助10
28秒前
29秒前
研友_VZG7GZ应助潇潇雨歇采纳,获得10
32秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
The Healthy Socialist Life in Maoist China 600
The Vladimirov Diaries [by Peter Vladimirov] 600
Data Structures and Algorithms in Java 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3268281
求助须知:如何正确求助?哪些是违规求助? 2907854
关于积分的说明 8343465
捐赠科研通 2578165
什么是DOI,文献DOI怎么找? 1401736
科研通“疑难数据库(出版商)”最低求助积分说明 655174
邀请新用户注册赠送积分活动 634291