Machine learning for predicting halogen radical reactivity toward aqueous organic chemicals

卤素 反应性(心理学) 水溶液 化学 有机化学品 有机化学 环境化学 烷基 医学 替代医学 病理
作者
Youheng Liang,Xiaoliu Huangfu,Ruixing Huang,Zhenpeng Han,Sisi Wu,Jingrui Wang,Xinlong Long,Jun Ma,Qiang He
出处
期刊:Journal of Hazardous Materials [Elsevier]
卷期号:472: 134501-134501 被引量:1
标识
DOI:10.1016/j.jhazmat.2024.134501
摘要

Rapid advances in machine learning (ML) provide fast, accurate, and widely applicable methods for predicting free radical-mediated organic pollutant reactivity. In this study, the rate constants (logk) of four halogen radicals were predicted using Morgan fingerprint (MF) and Mordred descriptor (MD) in combination with a series of ML models. The findings highlighted that making accurate predictions for various datasets depended on an effective combination of descriptors and algorithms. To further alleviate the challenge of limited sample size, we introduced a data combination strategy that improved prediction accuracy and mitigated overfitting by combining different datasets. The Light Gradient Boosting Machine (LightGBM) with MF and Random Forest (RF) with MD models based on the unified dataset were finally selected as the optimal models. The SHapley Additive exPlanations revealed insights: the MF-LightGBM model successfully captured the influence of electron-withdrawing/donating groups, while autocorrelation, walk count and information content descriptors in the MD-RF model were identified as key features. Furthermore, the important contribution of pH was emphasized. The results of the applicability domain analysis further supported that the developed model can make reliable predictions for query compounds across a broader range. Finally, a practical web application for logk calculations was built.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
rebeccahu应助周淡念采纳,获得10
1秒前
慕青应助重要手机采纳,获得10
1秒前
无花果应助一又二分之一采纳,获得10
1秒前
2秒前
花花给花花的求助进行了留言
4秒前
5秒前
无情听南发布了新的文献求助10
6秒前
maox1aoxin应助meta采纳,获得40
6秒前
6秒前
FIN应助Susan采纳,获得10
7秒前
7秒前
8秒前
9秒前
干焱完成签到,获得积分10
9秒前
嘻嘻梦发布了新的文献求助10
10秒前
11秒前
水123发布了新的文献求助10
11秒前
12秒前
12秒前
重要手机发布了新的文献求助10
13秒前
123完成签到,获得积分10
13秒前
14秒前
wwwei发布了新的文献求助10
14秒前
15秒前
15秒前
16秒前
16秒前
李爱国应助大力沛萍采纳,获得10
18秒前
18秒前
20秒前
Jonathan发布了新的文献求助10
20秒前
吼隆隆隆发布了新的文献求助10
20秒前
XuanZhang发布了新的文献求助10
22秒前
23秒前
24秒前
DK_fish完成签到,获得积分10
25秒前
25秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3459163
求助须知:如何正确求助?哪些是违规求助? 3053710
关于积分的说明 9037991
捐赠科研通 2742977
什么是DOI,文献DOI怎么找? 1504606
科研通“疑难数据库(出版商)”最低求助积分说明 695334
邀请新用户注册赠送积分活动 694663