已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Accelerating Sampling and Aggregation Operations in GNN Frameworks with GPU Initiated Direct Storage Accesses

计算机科学 并行计算 采样(信号处理) 计算机数据存储 数据库 计算机硬件 滤波器(信号处理) 计算机视觉
作者
Jeongmin Park,Vikram Sharma Mailthody,Zaid Qureshi,Wen‐mei Hwu
出处
期刊:Proceedings of the VLDB Endowment [Association for Computing Machinery]
卷期号:17 (6): 1227-1240 被引量:1
标识
DOI:10.14778/3648160.3648166
摘要

Graph Neural Networks (GNNs) are emerging as a powerful tool for learning from graph-structured data and performing sophisticated inference tasks in various application domains. Although GNNs have been shown to be effective on modest-sized graphs, training them on large-scale graphs remains a significant challenge due to the lack of efficient storage access and caching methods for graph data. Existing frameworks for training GNNs use CPUs for graph sampling and feature aggregation, while the training and updating of model weights are executed on GPUs. However, our in-depth profiling shows CPUs cannot achieve the graph sampling and feature aggregation throughput required to keep up with GPUs. Furthermore, when the graph and its embeddings do not fit in the CPU memory, the overhead introduced by the operating system, say for handling page-faults, causes gross under-utilization of hardware and prolonged end-to-end execution time. To address these issues, we propose the GPU Initiated Direct Storage Access (GIDS) dataloader, to enable GPU-oriented GNN training for large-scale graphs while efficiently utilizing all hardware resources, such as CPU memory, storage, and GPU memory. The GIDS dataloader first addresses memory capacity constraints by enabling GPU threads to directly fetch feature vectors from storage. Then, we introduce a set of innovative solutions, including the dynamic storage access accumulator, constant CPU buffer, and GPU software cache with window buffering, to balance resource utilization across the entire system for improved end-to-end training throughput. Our evaluation using a single GPU on terabyte-scale GNN datasets shows that the GIDS dataloader accelerates the overall DGL GNN training pipeline by up to 582× when compared to the current, state-of-the-art DGL dataloader.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sunny完成签到 ,获得积分10
1秒前
就看最后一篇完成签到 ,获得积分10
2秒前
科研通AI5应助玉252采纳,获得10
3秒前
4秒前
ding应助稳重的若雁采纳,获得10
5秒前
Kevin完成签到,获得积分10
5秒前
Jepsen完成签到 ,获得积分10
6秒前
Lh发布了新的文献求助10
9秒前
下文献的蜉蝣完成签到 ,获得积分10
10秒前
NexusExplorer应助ss采纳,获得10
10秒前
可久斯基完成签到 ,获得积分10
10秒前
xiemeili完成签到 ,获得积分10
12秒前
小土豆完成签到 ,获得积分10
14秒前
Owen应助阿巴阿巴采纳,获得20
15秒前
汪宇完成签到 ,获得积分10
17秒前
A_long关注了科研通微信公众号
18秒前
zmaifyc完成签到 ,获得积分10
19秒前
yiyi163完成签到,获得积分10
19秒前
称心采枫完成签到 ,获得积分10
19秒前
21秒前
长路漫漫完成签到,获得积分10
21秒前
momo完成签到,获得积分10
22秒前
汉堡包应助激昂的逊采纳,获得10
22秒前
姆姆没买完成签到 ,获得积分10
23秒前
25秒前
大树完成签到 ,获得积分10
27秒前
pear发布了新的文献求助10
27秒前
只如初完成签到,获得积分10
29秒前
nanfang完成签到 ,获得积分10
29秒前
火星仙人掌完成签到 ,获得积分10
31秒前
飞快的云朵完成签到,获得积分10
32秒前
33秒前
shuo0976应助飓风卡塔琳娜采纳,获得10
36秒前
zcc111完成签到,获得积分10
38秒前
激昂的逊发布了新的文献求助10
39秒前
张尧摇摇摇完成签到 ,获得积分10
42秒前
秋风今是完成签到 ,获得积分10
44秒前
直率的笑翠完成签到 ,获得积分10
46秒前
JJING完成签到 ,获得积分10
47秒前
包破茧完成签到,获得积分10
48秒前
高分求助中
All the Birds of the World 3000
Weirder than Sci-fi: Speculative Practice in Art and Finance 960
IZELTABART TAPATANSINE 500
Introduction to Comparative Public Administration: Administrative Systems and Reforms in Europe: Second Edition 2nd Edition 300
Spontaneous closure of a dural arteriovenous malformation 300
GNSS Applications in Earth and Space Observations 300
Not Equal : Towards an International Law of Finance 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3725173
求助须知:如何正确求助?哪些是违规求助? 3270258
关于积分的说明 9965270
捐赠科研通 2985231
什么是DOI,文献DOI怎么找? 1637843
邀请新用户注册赠送积分活动 777738
科研通“疑难数据库(出版商)”最低求助积分说明 747171