Explaining Neural News Recommendation with Attributions onto Reading Histories

计算机科学 阅读(过程) 归属 人工智能 情报检索 自然语言处理 万维网 语言学 心理学 社会心理学 哲学
作者
Lucas Möller,Sebastian Padó
出处
期刊:ACM Transactions on Intelligent Systems and Technology [Association for Computing Machinery]
标识
DOI:10.1145/3673233
摘要

An important aspect of responsible recommendation systems is the transparency of the prediction mechanisms. This is a general challenge for deep-learning-based systems such as the currently predominant neural news recommender architectures which are optimized to predict clicks by matching candidate news items against users’ reading histories. Such systems achieve state-of-the-art click-prediction performance, but the rationale for their decisions is difficult to assess. At the same time, the economic and societal impact of these systems makes such insights very much desirable. In this paper, we ask the question to what extent the recommendations of current news recommender systems are actually based on content-related evidence from reading histories. We approach this question from an explainability perspective. Building on the concept of integrated gradients, we present a neural news recommender that can accurately attribute individual recommendations to news items and words in input reading histories while maintaining a top scoring click-prediction performance. Using our method as a diagnostic tool, we find that: (a), a substantial number of users’ clicks on news are not explainable from reading histories, and many history-explainable items are actually skipped; (b), while many recommendations are based on content-related evidence in histories, for others the model does not attend to reasonable evidence, and recommendations stem from a spurious bias in user representations. Our code is publicly available 1 .

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
金容完成签到,获得积分10
刚刚
xwx发布了新的文献求助10
刚刚
123发布了新的文献求助10
2秒前
小鲤鱼发布了新的文献求助10
2秒前
科目三应助爱听歌的妙梦采纳,获得10
3秒前
科研通AI2S应助丹霞采纳,获得10
4秒前
Revision完成签到,获得积分10
5秒前
开朗万天发布了新的文献求助10
5秒前
华仔应助czq采纳,获得10
6秒前
6秒前
赘婿应助xwx采纳,获得10
6秒前
6秒前
7秒前
情怀应助黑暗幽灵采纳,获得10
7秒前
Decade2021完成签到,获得积分10
7秒前
8秒前
123完成签到,获得积分10
8秒前
kylin发布了新的文献求助10
9秒前
Decade2021发布了新的文献求助10
9秒前
10秒前
11秒前
SRsora发布了新的文献求助10
11秒前
12秒前
嘎嘣脆完成签到,获得积分10
12秒前
王肖发布了新的文献求助10
14秒前
14秒前
曹曹完成签到,获得积分10
14秒前
蓝毗尼发布了新的文献求助10
15秒前
15秒前
16秒前
莫惜君灬完成签到 ,获得积分10
17秒前
aaaaa发布了新的文献求助30
18秒前
李健应助土狗采纳,获得10
19秒前
852应助辰月贰拾采纳,获得10
19秒前
黑暗幽灵发布了新的文献求助10
19秒前
背后书雪完成签到 ,获得积分10
20秒前
21秒前
22秒前
刺五加完成签到 ,获得积分10
22秒前
meiying发布了新的文献求助10
22秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 820
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Typology of Conditional Constructions 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3570542
求助须知:如何正确求助?哪些是违规求助? 3141299
关于积分的说明 9442455
捐赠科研通 2842608
什么是DOI,文献DOI怎么找? 1562356
邀请新用户注册赠送积分活动 731072
科研通“疑难数据库(出版商)”最低求助积分说明 718272