Deciphering cutaneous melanoma prognosis through LDL metabolism: Single‐cell transcriptomics analysis via 101 machine learning algorithms

黑色素瘤 生物 转录组 皮肤癌 癌症 癌症研究 基因 免疫系统 计算生物学 脂质代谢 生物信息学 免疫学 基因表达 遗传学 内分泌学
作者
Jiaheng Xie,Dan Wu,Pengpeng Zhang,Songyun Zhao,Min Qi
出处
期刊:Experimental Dermatology [Wiley]
卷期号:33 (4)
标识
DOI:10.1111/exd.15070
摘要

Abstract Cutaneous melanoma poses a formidable challenge within the field of oncology, marked by its aggressive nature and capacity for metastasis. Despite extensive research uncovering numerous genetic and molecular contributors to cutaneous melanoma development, there remains a critical knowledge gap concerning the role of lipids, notably low‐density lipoprotein (LDL), in this lethal skin cancer. This article endeavours to bridge this knowledge gap by delving into the intricate interplay between LDL metabolism and cutaneous melanoma, shedding light on how lipids influence tumour progression, immune responses and potential therapeutic avenues. Genes associated with LDL metabolism were extracted from the GSEA database. We acquired and analysed single‐cell sequencing data (GSE215120) and bulk‐RNA sequencing data, including the TCGA data set, GSE19234, GSE22153 and GSE65904. Our analysis unveiled the heterogeneity of LDL across various cell types at the single‐cell sequencing level. Additionally, we constructed an LDL‐related signature (LRS) using machine learning algorithms, incorporating differentially expressed genes and highly correlated genes. The LRS serves as a valuable tool for assessing the prognosis, immunity and mutation status of patients with cutaneous melanoma. Furthermore, we conducted experiments on A375 and WM‐115 cells to validate the function of PPP2R1A, a pivotal gene within the LRS. Our comprehensive approach, combining advanced bioinformatics analyses with an extensive review of current literature, presents compelling evidence regarding the significance of LDL within the cutaneous melanoma microenvironment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
不想起昵称完成签到 ,获得积分10
刚刚
刚刚
1秒前
精明外套发布了新的文献求助50
1秒前
shangfeng发布了新的文献求助30
2秒前
彭于彦祖应助asdfghjkl采纳,获得30
2秒前
3秒前
天天快乐应助甜甜玫瑰采纳,获得10
3秒前
迷人芙蓉发布了新的文献求助10
3秒前
3秒前
2222bbnm发布了新的文献求助10
4秒前
雅雅发布了新的文献求助10
4秒前
5秒前
5秒前
稳重醉香发布了新的文献求助10
5秒前
封城岁月发布了新的文献求助10
6秒前
冰阔落完成签到,获得积分10
6秒前
7秒前
7秒前
周星星完成签到,获得积分10
8秒前
皮卡丘发布了新的文献求助30
8秒前
zx完成签到,获得积分10
9秒前
9秒前
爆米花应助安静的棉花糖采纳,获得10
10秒前
10秒前
smallant发布了新的文献求助30
10秒前
向晚发布了新的文献求助10
10秒前
single发布了新的文献求助10
11秒前
精明外套完成签到,获得积分10
12秒前
大皿同学发布了新的文献求助10
13秒前
13秒前
13秒前
14秒前
在水一方应助gsp采纳,获得10
14秒前
橙子完成签到,获得积分10
16秒前
Jeffery发布了新的文献求助10
16秒前
16秒前
bale完成签到 ,获得积分10
17秒前
zwip_xes完成签到,获得积分10
17秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
A new approach of magnetic circular dichroism to the electronic state analysis of intact photosynthetic pigments 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148940
求助须知:如何正确求助?哪些是违规求助? 2800005
关于积分的说明 7837927
捐赠科研通 2457512
什么是DOI,文献DOI怎么找? 1307891
科研通“疑难数据库(出版商)”最低求助积分说明 628322
版权声明 601685