A review on convolutional neural network in rolling bearing fault diagnosis

可解释性 卷积神经网络 计算机科学 人工智能 深度学习 超参数 一般化 机器学习 特征(语言学) 断层(地质) 领域(数学) 人工神经网络 哲学 数学分析 地震学 地质学 纯数学 语言学 数学
作者
Xin Li,Zengqiang Ma,Zonghao Yuan,Tianming Mu,Guoxin Du,Yan Liang,Бо Лю
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (7): 072002-072002 被引量:3
标识
DOI:10.1088/1361-6501/ad356e
摘要

Abstract The health condition of rolling bearings has a direct impact on the safe operation of rotating machinery. And their working environment is harsh and the working condition is complex, which brings challenges to fault diagnosis. With the development of computer technology, deep learning has been applied in the field of fault diagnosis and has rapidly developed. Among them, convolutional neural network (CNN) has received great attention from researchers due to its powerful data mining ability and feature adaptive learning ability. Based on recent research hotspots, the development history and trend of CNN is summarized and analyzed. Firstly, the basic structure of CNN is introduced and the important progress of classical CNN models for rolling bearing fault diagnosis in recent years is studied. The problems with the classic CNN algorithm have been pointed out. Secondly, to solve the above problems, combined with recent research achievements, various methods and principles for optimizing CNN are introduced and compared from the perspectives of deep feature extraction, hyperparameter optimization, network structure optimization. Although significant progress has been made in the research of fault diagnosis of rolling bearings based on CNN, there is still room for improvement and development in addressing issues such as low accuracy of imbalanced data, weak model generalization, and poor network interpretability. Therefore, the future development trend of CNN networks is discussed finally. And transfer learning models are introduced to improve the generalization ability of CNN and interpretable CNN is used to increase the interpretability of CNN networks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ES完成签到 ,获得积分10
刚刚
July完成签到,获得积分10
1秒前
十六完成签到,获得积分10
1秒前
3秒前
3秒前
Zhang完成签到,获得积分10
4秒前
Lucas应助土豪的白卉采纳,获得10
4秒前
4秒前
哎嘿应助科研通管家采纳,获得10
5秒前
哎嘿应助科研通管家采纳,获得10
5秒前
Raylihuang应助科研通管家采纳,获得10
5秒前
李健应助科研通管家采纳,获得10
5秒前
李爱国应助科研通管家采纳,获得10
5秒前
brainxue发布了新的文献求助10
6秒前
6秒前
谦让超短裙完成签到,获得积分10
8秒前
Grin完成签到,获得积分10
8秒前
8秒前
愉快书琴完成签到,获得积分10
9秒前
11秒前
SciGPT应助brainxue采纳,获得10
12秒前
12秒前
NZH发布了新的文献求助10
13秒前
more完成签到,获得积分10
14秒前
15秒前
cocu117完成签到 ,获得积分10
17秒前
coff完成签到,获得积分10
18秒前
三个哈卡完成签到,获得积分10
20秒前
无相完成签到 ,获得积分10
20秒前
橙汁完成签到,获得积分10
21秒前
Jun应助NZH采纳,获得50
23秒前
科研人完成签到 ,获得积分10
25秒前
友好的牛排完成签到,获得积分10
25秒前
831143完成签到 ,获得积分0
26秒前
受伤破茧完成签到,获得积分10
26秒前
zedhumble完成签到,获得积分10
28秒前
28秒前
29秒前
lianqing完成签到,获得积分10
29秒前
康复小白完成签到 ,获得积分10
34秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162519
求助须知:如何正确求助?哪些是违规求助? 2813358
关于积分的说明 7900144
捐赠科研通 2472938
什么是DOI,文献DOI怎么找? 1316594
科研通“疑难数据库(出版商)”最低求助积分说明 631375
版权声明 602175