A review on convolutional neural network in rolling bearing fault diagnosis

可解释性 卷积神经网络 计算机科学 人工智能 深度学习 超参数 一般化 机器学习 特征(语言学) 断层(地质) 领域(数学) 人工神经网络 哲学 数学分析 地震学 地质学 纯数学 语言学 数学
作者
Xin Li,Zengqiang Ma,Zonghao Yuan,Tianming Mu,Guoxin Du,Yan Liang,Jingwen Liu
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (7): 072002-072002 被引量:9
标识
DOI:10.1088/1361-6501/ad356e
摘要

Abstract The health condition of rolling bearings has a direct impact on the safe operation of rotating machinery. And their working environment is harsh and the working condition is complex, which brings challenges to fault diagnosis. With the development of computer technology, deep learning has been applied in the field of fault diagnosis and has rapidly developed. Among them, convolutional neural network (CNN) has received great attention from researchers due to its powerful data mining ability and feature adaptive learning ability. Based on recent research hotspots, the development history and trend of CNN is summarized and analyzed. Firstly, the basic structure of CNN is introduced and the important progress of classical CNN models for rolling bearing fault diagnosis in recent years is studied. The problems with the classic CNN algorithm have been pointed out. Secondly, to solve the above problems, combined with recent research achievements, various methods and principles for optimizing CNN are introduced and compared from the perspectives of deep feature extraction, hyperparameter optimization, network structure optimization. Although significant progress has been made in the research of fault diagnosis of rolling bearings based on CNN, there is still room for improvement and development in addressing issues such as low accuracy of imbalanced data, weak model generalization, and poor network interpretability. Therefore, the future development trend of CNN networks is discussed finally. And transfer learning models are introduced to improve the generalization ability of CNN and interpretable CNN is used to increase the interpretability of CNN networks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
fanyueyue应助Amy采纳,获得10
刚刚
刚刚
lcx完成签到,获得积分10
刚刚
SYLH应助无私诗云采纳,获得10
1秒前
2秒前
慕容博完成签到 ,获得积分0
3秒前
笑一笑完成签到,获得积分10
3秒前
4秒前
4秒前
4秒前
芳芳完成签到,获得积分10
5秒前
11111发布了新的文献求助10
5秒前
chen.完成签到,获得积分10
6秒前
Dan完成签到 ,获得积分10
6秒前
6秒前
淡定自中完成签到 ,获得积分10
7秒前
亲爱的冯老师完成签到 ,获得积分10
7秒前
tang完成签到,获得积分10
8秒前
与淇完成签到,获得积分10
8秒前
伊萨卡完成签到 ,获得积分10
8秒前
Khr1stINK完成签到,获得积分10
9秒前
酷波er应助qcl采纳,获得10
9秒前
1111111完成签到,获得积分10
9秒前
胖九完成签到,获得积分10
9秒前
烟花应助淡然鸡翅采纳,获得10
9秒前
逍遥自在发布了新的文献求助10
10秒前
luke17743508621完成签到 ,获得积分10
10秒前
麦客发布了新的文献求助10
10秒前
林深完成签到,获得积分10
10秒前
柠檬柚子晴完成签到,获得积分10
11秒前
总之发布了新的文献求助10
11秒前
77完成签到 ,获得积分10
11秒前
无私诗云完成签到,获得积分10
11秒前
fussguai完成签到,获得积分10
11秒前
12秒前
海蓝鲸完成签到 ,获得积分10
13秒前
杨小羊完成签到,获得积分10
13秒前
fujun完成签到,获得积分10
14秒前
GSY完成签到,获得积分20
14秒前
邱航完成签到,获得积分10
14秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009004
求助须知:如何正确求助?哪些是违规求助? 3548719
关于积分的说明 11299835
捐赠科研通 3283284
什么是DOI,文献DOI怎么找? 1810333
邀请新用户注册赠送积分活动 886115
科研通“疑难数据库(出版商)”最低求助积分说明 811259