A review on convolutional neural network in rolling bearing fault diagnosis

可解释性 卷积神经网络 计算机科学 人工智能 深度学习 超参数 一般化 机器学习 特征(语言学) 断层(地质) 领域(数学) 人工神经网络 哲学 数学分析 地震学 地质学 纯数学 语言学 数学
作者
Xin Li,Zengqiang Ma,Zonghao Yuan,Tianming Mu,Guoxin Du,Yan Liang,Jingwen Liu
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (7): 072002-072002 被引量:27
标识
DOI:10.1088/1361-6501/ad356e
摘要

Abstract The health condition of rolling bearings has a direct impact on the safe operation of rotating machinery. And their working environment is harsh and the working condition is complex, which brings challenges to fault diagnosis. With the development of computer technology, deep learning has been applied in the field of fault diagnosis and has rapidly developed. Among them, convolutional neural network (CNN) has received great attention from researchers due to its powerful data mining ability and feature adaptive learning ability. Based on recent research hotspots, the development history and trend of CNN is summarized and analyzed. Firstly, the basic structure of CNN is introduced and the important progress of classical CNN models for rolling bearing fault diagnosis in recent years is studied. The problems with the classic CNN algorithm have been pointed out. Secondly, to solve the above problems, combined with recent research achievements, various methods and principles for optimizing CNN are introduced and compared from the perspectives of deep feature extraction, hyperparameter optimization, network structure optimization. Although significant progress has been made in the research of fault diagnosis of rolling bearings based on CNN, there is still room for improvement and development in addressing issues such as low accuracy of imbalanced data, weak model generalization, and poor network interpretability. Therefore, the future development trend of CNN networks is discussed finally. And transfer learning models are introduced to improve the generalization ability of CNN and interpretable CNN is used to increase the interpretability of CNN networks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hello应助文艺蓝天采纳,获得10
刚刚
在水一方应助小邓采纳,获得10
刚刚
刚刚
1秒前
Phoebe0730发布了新的文献求助10
1秒前
丘比特应助twr采纳,获得10
2秒前
YOYOYO发布了新的文献求助10
2秒前
无与伦比发布了新的文献求助10
2秒前
852应助a水爱科研采纳,获得10
2秒前
共享精神应助shirly采纳,获得10
2秒前
王晨旭发布了新的文献求助10
2秒前
3秒前
8848完成签到,获得积分10
3秒前
3秒前
4秒前
彭于晏应助冰菱采纳,获得10
4秒前
JUdy完成签到,获得积分10
5秒前
5秒前
穆一手完成签到 ,获得积分10
6秒前
研友_VZG7GZ应助落寞易形采纳,获得10
6秒前
8秒前
清颜完成签到 ,获得积分10
9秒前
汉堡包应助王晨旭采纳,获得10
9秒前
9秒前
NAN发布了新的文献求助10
10秒前
黄景阳完成签到,获得积分10
10秒前
绵绵冰完成签到 ,获得积分10
10秒前
CWJ发布了新的文献求助20
11秒前
义气的奇异果完成签到,获得积分20
11秒前
JamesPei应助小叶子采纳,获得10
12秒前
娇气的火车完成签到,获得积分20
12秒前
mapha完成签到,获得积分10
12秒前
陈青桃完成签到,获得积分10
12秒前
落后钢铁侠完成签到 ,获得积分10
12秒前
13秒前
ResearchTrees发布了新的文献求助10
13秒前
13秒前
13秒前
14秒前
程风破浪完成签到,获得积分10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
A Treatise on the Mathematical Theory of Elasticity 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5252221
求助须知:如何正确求助?哪些是违规求助? 4416056
关于积分的说明 13748433
捐赠科研通 4287883
什么是DOI,文献DOI怎么找? 2352691
邀请新用户注册赠送积分活动 1349487
关于科研通互助平台的介绍 1308960