A review on convolutional neural network in rolling bearing fault diagnosis

可解释性 卷积神经网络 计算机科学 人工智能 深度学习 超参数 一般化 机器学习 特征(语言学) 断层(地质) 领域(数学) 人工神经网络 哲学 数学分析 地震学 地质学 纯数学 语言学 数学
作者
Xin Li,Zengqiang Ma,Zonghao Yuan,Tianming Mu,Guoxin Du,Yan Liang,Jingwen Liu
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (7): 072002-072002 被引量:17
标识
DOI:10.1088/1361-6501/ad356e
摘要

Abstract The health condition of rolling bearings has a direct impact on the safe operation of rotating machinery. And their working environment is harsh and the working condition is complex, which brings challenges to fault diagnosis. With the development of computer technology, deep learning has been applied in the field of fault diagnosis and has rapidly developed. Among them, convolutional neural network (CNN) has received great attention from researchers due to its powerful data mining ability and feature adaptive learning ability. Based on recent research hotspots, the development history and trend of CNN is summarized and analyzed. Firstly, the basic structure of CNN is introduced and the important progress of classical CNN models for rolling bearing fault diagnosis in recent years is studied. The problems with the classic CNN algorithm have been pointed out. Secondly, to solve the above problems, combined with recent research achievements, various methods and principles for optimizing CNN are introduced and compared from the perspectives of deep feature extraction, hyperparameter optimization, network structure optimization. Although significant progress has been made in the research of fault diagnosis of rolling bearings based on CNN, there is still room for improvement and development in addressing issues such as low accuracy of imbalanced data, weak model generalization, and poor network interpretability. Therefore, the future development trend of CNN networks is discussed finally. And transfer learning models are introduced to improve the generalization ability of CNN and interpretable CNN is used to increase the interpretability of CNN networks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Criminology34举报姜睿思求助涉嫌违规
1秒前
1秒前
姜呱呱呱发布了新的文献求助10
1秒前
orixero应助小白采纳,获得10
2秒前
2秒前
Li完成签到,获得积分10
3秒前
张博旭发布了新的文献求助10
3秒前
小红完成签到,获得积分10
3秒前
Hello应助忐忑的代梅采纳,获得10
4秒前
devoel发布了新的文献求助10
4秒前
4秒前
4秒前
4秒前
4秒前
dingding完成签到 ,获得积分20
4秒前
一棵树完成签到,获得积分10
5秒前
5秒前
pp完成签到,获得积分10
5秒前
量子星尘发布了新的文献求助10
5秒前
科目三应助CaiLing采纳,获得10
6秒前
孔令宇发布了新的文献求助10
7秒前
7秒前
8秒前
化身孤岛的鲸完成签到 ,获得积分10
8秒前
张可爱发布了新的文献求助10
9秒前
WDQ2024发布了新的文献求助10
9秒前
9秒前
RS6关注了科研通微信公众号
10秒前
11秒前
11秒前
无心的紫山完成签到,获得积分10
11秒前
12秒前
12秒前
13秒前
13秒前
13秒前
薯条完成签到,获得积分10
13秒前
竹醉发布了新的文献求助10
14秒前
Criminology34举报灰灰求助涉嫌违规
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Feigin and Cherry's Textbook of Pediatric Infectious Diseases Ninth Edition 2024 4000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Binary Alloy Phase Diagrams, 2nd Edition 1000
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5002504
求助须知:如何正确求助?哪些是违规求助? 4247522
关于积分的说明 13233308
捐赠科研通 4046386
什么是DOI,文献DOI怎么找? 2213604
邀请新用户注册赠送积分活动 1223632
关于科研通互助平台的介绍 1144041