Study on the deterioration of concrete performance in saline soil area under the combined effect of high low temperatures, chloride and sulfate salts

硫酸盐 材料科学 氯化物 水泥 腐蚀 粉煤灰 土壤盐分 腐蚀 多孔性 含水量 玄武岩纤维 复合材料 岩土工程 纤维 冶金 土壤科学 土壤水分 环境科学 地质学 古生物学
作者
Daming Luo,Fan Li,Ditao Niu
出处
期刊:Cement & Concrete Composites [Elsevier BV]
卷期号:150: 105531-105531 被引量:35
标识
DOI:10.1016/j.cemconcomp.2024.105531
摘要

Concrete structures in saline soil regions are prone to degradation due to chloride and sulfate erosion, compounded by the concurrent influences of drying, high and low temperatures, and freeze-thaw cycles. This study establishes a simulation test system for complex saline soil environments, integrating findings from real-world environmental investigations. The investigation focused on the degradation mechanism of concrete under the combined impacts of dry-wet and high-low temperature cycles, coupled with composite salt erosion. Additionally, the impacts of water-cement ratio, fly ash content, and basalt fiber content on concrete's mechanical properties and ion erosion resistance were analyzed. The alterations in the internal pore structure of corroded concrete were examined through nuclear magnetic resonance (NMR) technology. Utilizing the XGBoost algorithm, a predictive model for chloride and sulfate ion concentrations in concrete, under the combined influence of dry-wet and high-low temperature cycles, coupled with composite salt erosion, was developed. The findings reveal that the rate of concrete deterioration is gradually accelerating under the combined erosion to dry-wet cycles, high-low temperature cycles, and composite salt. Optimal fly ash and basalt fiber dosages for corrosion resistance are determined to be 10% and 0.10%, respectively. During advanced erosion stages, concrete porosity, capillary and macropore volume fractions increase, while gel pore volume fraction declines significantly. The XGBoost-based chloride and sulfate concentration prediction model demonstrates strong agreement with experimental measurements, yielding correlation indices of R2 = 0.98 and 0.97, respectively. Interpretation results obtained using SHAP from the machine learning model align with experimental outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
robin完成签到,获得积分10
1秒前
chester_WU应助小小鱼采纳,获得20
1秒前
东郭一斩完成签到,获得积分10
1秒前
2秒前
2秒前
2秒前
科研通AI5应助morris采纳,获得10
2秒前
3秒前
小王完成签到,获得积分10
4秒前
4秒前
最好发布了新的文献求助10
4秒前
含蓄的白安完成签到,获得积分10
4秒前
Wang1991发布了新的文献求助10
4秒前
玉梅发布了新的文献求助10
5秒前
AAAorangeCat发布了新的文献求助10
5秒前
6秒前
科目三应助yifeng11采纳,获得20
6秒前
洞悉发布了新的文献求助10
6秒前
森宝完成签到,获得积分10
7秒前
程佑贵发布了新的文献求助10
7秒前
7秒前
9秒前
Bugu关注了科研通微信公众号
9秒前
9秒前
10秒前
谢谢谢发布了新的文献求助10
12秒前
12秒前
小二郎应助小巧的晓旋采纳,获得10
12秒前
852应助兔宝宝采纳,获得10
12秒前
13秒前
大胆的弼发布了新的文献求助10
13秒前
YuuuY完成签到 ,获得积分10
13秒前
13秒前
14秒前
14秒前
14秒前
完美世界应助玉梅采纳,获得10
14秒前
17秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Partial Least Squares Structural Equation Modeling (PLS-SEM) using SmartPLS 3.0 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4624655
求助须知:如何正确求助?哪些是违规求助? 4024032
关于积分的说明 12456192
捐赠科研通 3708659
什么是DOI,文献DOI怎么找? 2045529
邀请新用户注册赠送积分活动 1077574
科研通“疑难数据库(出版商)”最低求助积分说明 960093