Study on the deterioration of concrete performance in saline soil area under the combined effect of high low temperatures, chloride and sulfate salts

硫酸盐 材料科学 氯化物 水泥 腐蚀 粉煤灰 土壤盐分 腐蚀 多孔性 含水量 玄武岩纤维 复合材料 岩土工程 纤维 冶金 土壤科学 土壤水分 环境科学 地质学 古生物学
作者
Daming Luo,Fan Li,Ditao Niu
出处
期刊:Cement & Concrete Composites [Elsevier]
卷期号:150: 105531-105531 被引量:70
标识
DOI:10.1016/j.cemconcomp.2024.105531
摘要

Concrete structures in saline soil regions are prone to degradation due to chloride and sulfate erosion, compounded by the concurrent influences of drying, high and low temperatures, and freeze-thaw cycles. This study establishes a simulation test system for complex saline soil environments, integrating findings from real-world environmental investigations. The investigation focused on the degradation mechanism of concrete under the combined impacts of dry-wet and high-low temperature cycles, coupled with composite salt erosion. Additionally, the impacts of water-cement ratio, fly ash content, and basalt fiber content on concrete's mechanical properties and ion erosion resistance were analyzed. The alterations in the internal pore structure of corroded concrete were examined through nuclear magnetic resonance (NMR) technology. Utilizing the XGBoost algorithm, a predictive model for chloride and sulfate ion concentrations in concrete, under the combined influence of dry-wet and high-low temperature cycles, coupled with composite salt erosion, was developed. The findings reveal that the rate of concrete deterioration is gradually accelerating under the combined erosion to dry-wet cycles, high-low temperature cycles, and composite salt. Optimal fly ash and basalt fiber dosages for corrosion resistance are determined to be 10% and 0.10%, respectively. During advanced erosion stages, concrete porosity, capillary and macropore volume fractions increase, while gel pore volume fraction declines significantly. The XGBoost-based chloride and sulfate concentration prediction model demonstrates strong agreement with experimental measurements, yielding correlation indices of R2 = 0.98 and 0.97, respectively. Interpretation results obtained using SHAP from the machine learning model align with experimental outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ruandb完成签到,获得积分10
刚刚
沉舟完成签到 ,获得积分10
刚刚
刚刚
冷静灵竹完成签到,获得积分10
刚刚
1秒前
小波完成签到,获得积分10
1秒前
学生信的大叔完成签到,获得积分10
2秒前
666666完成签到,获得积分10
2秒前
SHAO应助科研通管家采纳,获得10
2秒前
充电宝应助科研通管家采纳,获得10
2秒前
英俊的铭应助科研通管家采纳,获得10
2秒前
大模型应助科研通管家采纳,获得10
2秒前
zhonglv7应助科研通管家采纳,获得10
2秒前
英俊的铭应助科研通管家采纳,获得10
2秒前
彭于晏应助科研通管家采纳,获得10
2秒前
香蕉觅云应助科研通管家采纳,获得30
2秒前
jiajia完成签到,获得积分10
2秒前
SHAO应助科研通管家采纳,获得10
2秒前
Twonej应助科研通管家采纳,获得30
2秒前
bkagyin应助科研通管家采纳,获得10
2秒前
2秒前
打打应助科研通管家采纳,获得10
2秒前
zhonglv7应助科研通管家采纳,获得10
2秒前
烟花应助科研通管家采纳,获得10
3秒前
星辰大海应助科研通管家采纳,获得10
3秒前
李健应助科研通管家采纳,获得10
3秒前
Owen应助科研通管家采纳,获得10
3秒前
Sci发布了新的文献求助10
3秒前
乐观的新波完成签到,获得积分10
4秒前
科研通AI6应助李创业采纳,获得10
4秒前
awen完成签到,获得积分10
5秒前
热心的灵凡应助王佳豪采纳,获得10
5秒前
完美世界应助王佳豪采纳,获得10
5秒前
5秒前
科研欣路完成签到,获得积分10
6秒前
li完成签到,获得积分10
6秒前
7秒前
7秒前
xiaoguai完成签到 ,获得积分10
7秒前
和平星完成签到 ,获得积分10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664967
求助须知:如何正确求助?哪些是违规求助? 4873787
关于积分的说明 15110464
捐赠科研通 4824067
什么是DOI,文献DOI怎么找? 2582622
邀请新用户注册赠送积分活动 1536541
关于科研通互助平台的介绍 1495147