Development and validation of a Radiopathomics model based on CT scans and whole slide images for discriminating between Stage I-II and Stage III gastric cancer

阶段(地层学) 外科肿瘤学 医学 癌症 放射科 计算机断层摄影术 医学物理学 人工智能 肿瘤科 内科学 计算机科学 地质学 古生物学
作者
Tianpei Yang,Liqiang Feng,Yongjie Huang,Jianxin Xue,Zhaoyong Feng,Liling Long
出处
期刊:BMC Cancer [BioMed Central]
卷期号:24 (1)
标识
DOI:10.1186/s12885-024-12021-2
摘要

Abstract Objective This study aimed to develop and validate an artificial intelligence radiopathological model using preoperative CT scans and postoperative hematoxylin and eosin (HE) stained slides to predict the pathological staging of gastric cancer (stage I-II and stage III). Methods This study included a total of 202 gastric cancer patients with confirmed pathological staging (training cohort: n = 141; validation cohort: n = 61). Pathological histological features were extracted from HE slides, and pathological models were constructed using logistic regression (LR), support vector machine (SVM), and NaiveBayes. The optimal pathological model was selected through receiver operating characteristic (ROC) curve analysis. Machine learnin algorithms were employed to construct radiomic models and radiopathological models using the optimal pathological model. Model performance was evaluated using ROC curve analysis, and clinical utility was estimated using decision curve analysis (DCA). Results A total of 311 pathological histological features were extracted from the HE images, including 101 Term Frequency-Inverse Document Frequency (TF-IDF) features and 210 deep learning features. A pathological model was constructed using 19 selected pathological features through dimension reduction, with the SVM model demonstrating superior predictive performance (AUC, training cohort: 0.949; validation cohort: 0.777). Radiomic features were constructed using 6 selected features from 1834 radiomic features extracted from CT scans via SVM machine algorithm. Simultaneously, a radiopathomics model was built using 17 non-zero coefficient features obtained through dimension reduction from a total of 2145 features (combining both radiomics and pathomics features). The best discriminative ability was observed in the SVM_radiopathomics model (AUC, training cohort: 0.953; validation cohort: 0.851), and clinical decision curve analysis (DCA) demonstrated excellent clinical utility. Conclusion The radiopathomics model, combining pathological and radiomic features, exhibited superior performance in distinguishing between stage I-II and stage III gastric cancer. This study is based on the prediction of pathological staging using pathological tissue slides from surgical specimens after gastric cancer curative surgery and preoperative CT images, highlighting the feasibility of conducting research on pathological staging using pathological slides and CT images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
脑洞疼应助希夷采纳,获得10
刚刚
独特背包完成签到,获得积分10
刚刚
1秒前
3秒前
美满艳完成签到,获得积分10
3秒前
DAN_完成签到,获得积分10
3秒前
金铭发布了新的文献求助30
4秒前
zakery发布了新的文献求助10
4秒前
zinc完成签到,获得积分20
4秒前
王肄博发布了新的文献求助10
5秒前
zhoushixian发布了新的文献求助10
5秒前
幻心发布了新的文献求助10
6秒前
Hello应助影子采纳,获得10
6秒前
6秒前
你可真下饭完成签到 ,获得积分10
6秒前
欢喜的元灵完成签到,获得积分10
7秒前
宁祚完成签到,获得积分10
7秒前
lmm完成签到,获得积分20
8秒前
11秒前
lmm发布了新的文献求助10
11秒前
12秒前
12秒前
13秒前
ding应助123456采纳,获得10
14秒前
打打应助thl采纳,获得10
15秒前
Daniel.Wu完成签到,获得积分10
17秒前
栗子完成签到,获得积分10
17秒前
科研通AI5应助顺心的毛巾采纳,获得10
17秒前
缓慢夜阑发布了新的文献求助10
17秒前
18秒前
Dale完成签到,获得积分10
18秒前
19秒前
19秒前
19秒前
风乎舞雩完成签到 ,获得积分10
20秒前
21秒前
Jasper应助axl采纳,获得10
21秒前
22秒前
JamesPei应助金铭采纳,获得30
22秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Density Functional Theory: A Practical Introduction, 2nd Edition 840
J'AI COMBATTU POUR MAO // ANNA WANG 660
Izeltabart tapatansine - AdisInsight 600
Gay and Lesbian Asia 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3756772
求助须知:如何正确求助?哪些是违规求助? 3300172
关于积分的说明 10112715
捐赠科研通 3014700
什么是DOI,文献DOI怎么找? 1655670
邀请新用户注册赠送积分活动 790049
科研通“疑难数据库(出版商)”最低求助积分说明 753552