Development and validation of a Radiopathomics model based on CT scans and whole slide images for discriminating between Stage I-II and Stage III gastric cancer

阶段(地层学) 外科肿瘤学 医学 癌症 放射科 计算机断层摄影术 医学物理学 人工智能 肿瘤科 内科学 计算机科学 地质学 古生物学
作者
Tianpei Yang,Liqiang Feng,Yongjie Huang,Jianxin Xue,Zhaoyong Feng,Liling Long
出处
期刊:BMC Cancer [Springer Nature]
卷期号:24 (1)
标识
DOI:10.1186/s12885-024-12021-2
摘要

Abstract Objective This study aimed to develop and validate an artificial intelligence radiopathological model using preoperative CT scans and postoperative hematoxylin and eosin (HE) stained slides to predict the pathological staging of gastric cancer (stage I-II and stage III). Methods This study included a total of 202 gastric cancer patients with confirmed pathological staging (training cohort: n = 141; validation cohort: n = 61). Pathological histological features were extracted from HE slides, and pathological models were constructed using logistic regression (LR), support vector machine (SVM), and NaiveBayes. The optimal pathological model was selected through receiver operating characteristic (ROC) curve analysis. Machine learnin algorithms were employed to construct radiomic models and radiopathological models using the optimal pathological model. Model performance was evaluated using ROC curve analysis, and clinical utility was estimated using decision curve analysis (DCA). Results A total of 311 pathological histological features were extracted from the HE images, including 101 Term Frequency-Inverse Document Frequency (TF-IDF) features and 210 deep learning features. A pathological model was constructed using 19 selected pathological features through dimension reduction, with the SVM model demonstrating superior predictive performance (AUC, training cohort: 0.949; validation cohort: 0.777). Radiomic features were constructed using 6 selected features from 1834 radiomic features extracted from CT scans via SVM machine algorithm. Simultaneously, a radiopathomics model was built using 17 non-zero coefficient features obtained through dimension reduction from a total of 2145 features (combining both radiomics and pathomics features). The best discriminative ability was observed in the SVM_radiopathomics model (AUC, training cohort: 0.953; validation cohort: 0.851), and clinical decision curve analysis (DCA) demonstrated excellent clinical utility. Conclusion The radiopathomics model, combining pathological and radiomic features, exhibited superior performance in distinguishing between stage I-II and stage III gastric cancer. This study is based on the prediction of pathological staging using pathological tissue slides from surgical specimens after gastric cancer curative surgery and preoperative CT images, highlighting the feasibility of conducting research on pathological staging using pathological slides and CT images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zlp完成签到,获得积分20
2秒前
renjiu完成签到,获得积分10
8秒前
科研通AI2S应助yy采纳,获得30
10秒前
吉以寒完成签到,获得积分10
11秒前
拼搏菲鹰完成签到,获得积分10
12秒前
Yulin Yu发布了新的文献求助10
15秒前
可靠的香菇完成签到 ,获得积分10
16秒前
嫁个养熊猫的完成签到 ,获得积分10
17秒前
ding应助萍萍子采纳,获得10
17秒前
17秒前
ww完成签到,获得积分10
19秒前
整形月光刀完成签到 ,获得积分10
19秒前
20秒前
干净的时光应助小六采纳,获得20
21秒前
哆啦A榕完成签到,获得积分10
21秒前
Rain完成签到,获得积分20
23秒前
嗯呐发布了新的文献求助10
24秒前
小熊完成签到,获得积分10
25秒前
bilibala发布了新的文献求助10
25秒前
柠檬泡芙发布了新的文献求助20
27秒前
科研通AI2S应助AoAoo采纳,获得10
28秒前
苏卿应助爱学习的小花生采纳,获得10
29秒前
草莓熊和他的豆角完成签到,获得积分10
30秒前
SciGPT应助慎独采纳,获得10
32秒前
情怀应助哭泣旭尧采纳,获得10
35秒前
CaptainLz完成签到,获得积分10
36秒前
充电宝应助雪山飞龙采纳,获得10
36秒前
40秒前
Neoshine应助嗯呐采纳,获得10
40秒前
42秒前
晨雾完成签到 ,获得积分10
43秒前
Kylin完成签到,获得积分10
45秒前
iNk完成签到,获得积分0
46秒前
伍秋望发布了新的文献求助10
46秒前
小天发布了新的文献求助30
47秒前
西西弗斯完成签到,获得积分10
47秒前
缓慢宛海完成签到,获得积分10
49秒前
49秒前
从容芮完成签到,获得积分0
49秒前
超级绫完成签到 ,获得积分10
50秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Heteroatom-Doped Carbon Allotropes: Progress in Synthesis, Characterization, and Applications 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3159845
求助须知:如何正确求助?哪些是违规求助? 2810777
关于积分的说明 7889428
捐赠科研通 2469877
什么是DOI,文献DOI怎么找? 1315131
科研通“疑难数据库(出版商)”最低求助积分说明 630742
版权声明 602012