Development and validation of a Radiopathomics model based on CT scans and whole slide images for discriminating between Stage I-II and Stage III gastric cancer

阶段(地层学) 外科肿瘤学 医学 癌症 放射科 计算机断层摄影术 医学物理学 人工智能 肿瘤科 内科学 计算机科学 地质学 古生物学
作者
Tianpei Yang,Liqiang Feng,Yongjie Huang,Jianxin Xue,Zhaoyong Feng,Liling Long
出处
期刊:BMC Cancer [BioMed Central]
卷期号:24 (1)
标识
DOI:10.1186/s12885-024-12021-2
摘要

Abstract Objective This study aimed to develop and validate an artificial intelligence radiopathological model using preoperative CT scans and postoperative hematoxylin and eosin (HE) stained slides to predict the pathological staging of gastric cancer (stage I-II and stage III). Methods This study included a total of 202 gastric cancer patients with confirmed pathological staging (training cohort: n = 141; validation cohort: n = 61). Pathological histological features were extracted from HE slides, and pathological models were constructed using logistic regression (LR), support vector machine (SVM), and NaiveBayes. The optimal pathological model was selected through receiver operating characteristic (ROC) curve analysis. Machine learnin algorithms were employed to construct radiomic models and radiopathological models using the optimal pathological model. Model performance was evaluated using ROC curve analysis, and clinical utility was estimated using decision curve analysis (DCA). Results A total of 311 pathological histological features were extracted from the HE images, including 101 Term Frequency-Inverse Document Frequency (TF-IDF) features and 210 deep learning features. A pathological model was constructed using 19 selected pathological features through dimension reduction, with the SVM model demonstrating superior predictive performance (AUC, training cohort: 0.949; validation cohort: 0.777). Radiomic features were constructed using 6 selected features from 1834 radiomic features extracted from CT scans via SVM machine algorithm. Simultaneously, a radiopathomics model was built using 17 non-zero coefficient features obtained through dimension reduction from a total of 2145 features (combining both radiomics and pathomics features). The best discriminative ability was observed in the SVM_radiopathomics model (AUC, training cohort: 0.953; validation cohort: 0.851), and clinical decision curve analysis (DCA) demonstrated excellent clinical utility. Conclusion The radiopathomics model, combining pathological and radiomic features, exhibited superior performance in distinguishing between stage I-II and stage III gastric cancer. This study is based on the prediction of pathological staging using pathological tissue slides from surgical specimens after gastric cancer curative surgery and preoperative CT images, highlighting the feasibility of conducting research on pathological staging using pathological slides and CT images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Miranda完成签到,获得积分10
1秒前
1秒前
罗中翠发布了新的文献求助10
3秒前
li完成签到 ,获得积分10
3秒前
6秒前
ZZ发布了新的文献求助10
6秒前
9秒前
按时毕业的小林完成签到,获得积分20
9秒前
Bio应助皮孤晴采纳,获得30
9秒前
滴滴哒完成签到,获得积分10
10秒前
wanci应助满眼星辰采纳,获得10
10秒前
Aoka发布了新的文献求助10
10秒前
15秒前
17秒前
木子完成签到,获得积分10
18秒前
紫色奶萨完成签到,获得积分10
19秒前
圈圈完成签到 ,获得积分10
19秒前
打打应助hh采纳,获得10
20秒前
量子星尘发布了新的文献求助10
20秒前
王嘉莹发布了新的文献求助10
21秒前
xuexi完成签到,获得积分10
22秒前
22秒前
25秒前
小麦子儿完成签到 ,获得积分10
25秒前
26秒前
李爱国应助sdjcni采纳,获得10
27秒前
27秒前
陈濠发布了新的文献求助10
28秒前
满眼星辰发布了新的文献求助10
29秒前
29秒前
30秒前
31秒前
小马甲应助冷傲曼荷采纳,获得10
31秒前
852应助和谐项链采纳,获得10
31秒前
李健应助罗中翠采纳,获得10
33秒前
小台农发布了新的文献求助10
34秒前
鳗鱼文涛发布了新的文献求助10
35秒前
文献菜鸟发布了新的文献求助10
35秒前
37秒前
37秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979662
求助须知:如何正确求助?哪些是违规求助? 3523636
关于积分的说明 11218202
捐赠科研通 3261164
什么是DOI,文献DOI怎么找? 1800473
邀请新用户注册赠送积分活动 879103
科研通“疑难数据库(出版商)”最低求助积分说明 807167