High throughput screening of mesenchymal stromal cell morphological response to inflammatory signals for bioreactor-based manufacturing of extracellular vesicles that modulate microglia

间充质干细胞 启动(农业) 小胶质细胞 生物反应器 间质细胞 神经炎症 细胞生物学 材料科学 炎症 化学 生物 免疫学 癌症研究 有机化学 植物 发芽
作者
Andrew M. Larey,Thomas M. Spoerer,Kanupriya R. Daga,Maria G. Morfin,Hannah M. Hynds,Jana M. Carpenter,Kelly M. Hines,Ross A. Marklein
出处
期刊:Bioactive Materials [Elsevier]
卷期号:37: 153-171 被引量:5
标识
DOI:10.1016/j.bioactmat.2024.03.009
摘要

Due to their immunomodulatory function, mesenchymal stromal cells (MSCs) are a promising therapeutic with the potential to treat neuroinflammation associated with neurodegenerative diseases. This function is mediated by secreted extracellular vesicles (MSC-EVs). Despite established safety, MSC clinical translation has been unsuccessful due to inconsistent clinical outcomes resulting from functional heterogeneity. Current approaches to mitigate functional heterogeneity include 'priming' MSCs with inflammatory signals to enhance function. However, comprehensive evaluation of priming and its effects on MSC-EV function has not been performed. Furthermore, clinical translation of MSC-EV therapies requires significant manufacturing scale-up, yet few studies have investigated the effects of priming in bioreactors. As MSC morphology has been shown to predict their immunomodulatory function, we screened MSC morphological response to an array of priming signals and evaluated MSC-EV identity and potency in response to priming in flasks and bioreactors. We identified unique priming conditions corresponding to distinct morphologies. These conditions demonstrated a range of MSC-EV preparation quality and lipidome, allowing us to discover a novel MSC-EV manufacturing condition, as well as gain insight into potential mechanisms of MSC-EV microglia modulation. Our novel screening approach and application of priming to MSC-EV bioreactor manufacturing informs refinement of larger-scale manufacturing and enhancement of MSC-EV function.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
木木VV完成签到,获得积分10
刚刚
2秒前
wili小云朵发布了新的文献求助10
2秒前
852应助jclin采纳,获得10
2秒前
迟大猫应助凹凸先森采纳,获得10
2秒前
tesla发布了新的文献求助10
3秒前
3秒前
Man_proposes完成签到,获得积分10
3秒前
心房子完成签到,获得积分10
3秒前
3秒前
岁岁平安完成签到,获得积分10
4秒前
成就老太完成签到 ,获得积分10
4秒前
zhw应助nana0134采纳,获得10
4秒前
激情的帆布鞋完成签到 ,获得积分10
4秒前
大个应助想游泳的鹰采纳,获得10
4秒前
yw蔚蓝完成签到,获得积分10
4秒前
zwhy完成签到,获得积分10
5秒前
冉冉发布了新的文献求助10
5秒前
5秒前
5秒前
5秒前
忧郁的人英完成签到,获得积分10
6秒前
Wone3发布了新的文献求助10
6秒前
Owen应助LZ7_采纳,获得10
7秒前
苏州河发布了新的文献求助10
8秒前
8秒前
顾矜应助月亮采纳,获得10
9秒前
今后应助小中采纳,获得10
9秒前
mayisang完成签到,获得积分10
10秒前
乖乖完成签到,获得积分10
10秒前
10秒前
lfg发布了新的文献求助10
11秒前
LONG完成签到 ,获得积分10
11秒前
11秒前
Jeremy发布了新的文献求助10
11秒前
11秒前
11秒前
CodeCraft应助muhaixingyun采纳,获得10
12秒前
谨慎小翠发布了新的文献求助10
12秒前
奇奇云完成签到 ,获得积分20
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Comprehensive Computational Chemistry 1000
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3552538
求助须知:如何正确求助?哪些是违规求助? 3128619
关于积分的说明 9378862
捐赠科研通 2827792
什么是DOI,文献DOI怎么找? 1554672
邀请新用户注册赠送积分活动 725515
科研通“疑难数据库(出版商)”最低求助积分说明 714981