粪肠球菌
万古霉素
微生物学
生物
操纵子
抗菌剂
抗生素
金黄色葡萄球菌
细菌
基因
生物化学
大肠杆菌
遗传学
作者
Loai M Abdelall,Yosra I. Nagy,Mona T. Kashef
摘要
Abstract Background Vancomycin-resistant enterococci (VRE) represent a public health threat due to the few available treatments. Such alarm has triggered worldwide initiatives to develop effective antimicrobial compounds and novel delivery and therapeutic strategies. vanA operon is responsible for most cases of acquired vancomycin resistance in enterococci. Objectives Development of a transcription factor decoy (TFD) system as a vanA gene transcription-inhibitor. Methods Vancomycin MIC was determined in the presence of TFD-lipoplexes. Additionally, the effect of TFD-lipoplexes on the expression level of the vanA gene and the growth pattern of E. faecalis was evaluated. The haemolytic activity of the developed TFD-lipoplexes and their cytotoxicity were examined. TFD-lipoplexes efficiency in treating vancomycin-resistant E. faecalis (VREF) infection was tested in vivo using a systemic mice infection model. Results A reduction in vancomycin MIC against VRE from 256 mg/L (resistant) to 16 mg/L (intermediate susceptible), in the presence of TFD-lipoplexes, was recorded. The developed TFD-lipoplexes lacked any effect on E. faecalis growth and significantly reduced the transcription level of the vanA gene by about 3-fold. In an initial evaluation of the safety of TFD-lipoplexes, they were found not to be overtly haemolytic to human blood or cytotoxic to human skin fibroblast cells. The co-administration of TFD-lipoplexes and vancomycin efficiently eradicated VREF infection in vivo. Conclusions The developed TFD-lipoplexes successfully restored vancomycin activity against VREF. They offer a safe effective unconventional therapy against this stubborn organism and present a revolution in gene therapy that can be applied to other resistance-encoding genes in various organisms.
科研通智能强力驱动
Strongly Powered by AbleSci AI