The Effect of AI-Enabled Credit Scoring on Financial Inclusion: Evidence from One Million Underserved Population

金融包容性 包裹体(矿物) 人口 业务 财务 金融体系 医学 金融服务 心理学 环境卫生 社会心理学
作者
Chunxiao Li,Hongchang Wang,Songtao Jiang,Bin Gu
出处
期刊:Management Information Systems Quarterly [MIS Quarterly]
标识
DOI:10.25300/misq/2024/18340
摘要

We studied the effect of adopting an AI-enabled credit scoring model by a major bank on financial inclusion as measured by changes to the approval rate, default rate, and utilization level of a personal loan product for the underserved population. The bank served over 50 million customers and used a traditional rule-based model to evaluate the default risk of each loan application. It recently developed an AI model with higher prediction accuracy of default risk and used the AI model and the traditional model together in assessing loan applications for one of its personal loan products. Although the AI model could be more accurate in estimating default risk, little is known about its impact on financial inclusion. We investigated this question using a difference-in-differences approach by comparing changes in financial inclusion of the personal loan product adopting the AI model to that of a similar personal loan product without adopting the AI model. We found that the AI model enhanced financial inclusion for the underserved population by simultaneously increasing the approval rate and reducing the default rate. Further analysis attributed the enhancement in financial inclusion to the use of weak signals (i.e., data not conventionally used to evaluate creditworthiness) by the AI model and its sophisticated machine learning algorithms. Our finding is consistent with the statistical discrimination theory, as the use of weak signals and sophisticated machine learning algorithms improves prediction accuracy at the individual level, thus reducing the reliance on group characteristics that often lead to financial exclusion. We elaborated on the development process of the AI model to illustrate how and why the AI model can better evaluate the underserved population. We also found the impacts of the AI model heterogeneous across subgroups, and those with missing weak signals saw smaller improvements in the approval rate. A simulation-based analysis showed that simplified AI models could still increase the approval rate and reduce the default rate of the underserved population. We further discussed the compliance and generalizability issues about using AI and privacy-sensitive data in credit scoring. Our findings provided rich theoretical and practical implications for social justice by documenting how an AI model designed for improving prediction accuracy can enhance financial inclusion.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
子车茗应助Scalpel采纳,获得10
1秒前
3秒前
颖中竹子发布了新的文献求助30
3秒前
一杯茶发布了新的文献求助30
3秒前
慕青应助scitester采纳,获得10
4秒前
4秒前
科研通AI2S应助LeiX采纳,获得10
4秒前
4秒前
机灵的尔竹完成签到,获得积分10
5秒前
6秒前
6秒前
6秒前
小二郎应助认真的裙子采纳,获得10
7秒前
西行龟发布了新的文献求助10
7秒前
7秒前
9秒前
10秒前
zoujianqiao发布了新的文献求助10
10秒前
11秒前
11秒前
善学以致用应助小小鱼采纳,获得10
12秒前
MP_zhang发布了新的文献求助10
13秒前
态度发布了新的文献求助10
14秒前
14秒前
Akim应助gyl采纳,获得10
14秒前
西行龟完成签到,获得积分10
15秒前
15秒前
16秒前
17秒前
ssss发布了新的文献求助10
20秒前
英姑应助罐子采纳,获得10
22秒前
完美世界应助Lin采纳,获得10
22秒前
24秒前
24秒前
weihe发布了新的文献求助20
24秒前
25秒前
一一完成签到,获得积分20
26秒前
26秒前
27秒前
28秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Becoming: An Introduction to Jung's Concept of Individuation 600
Evolution 3rd edition 500
Die Gottesanbeterin: Mantis religiosa: 656 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3171184
求助须知:如何正确求助?哪些是违规求助? 2822083
关于积分的说明 7937925
捐赠科研通 2482524
什么是DOI,文献DOI怎么找? 1322654
科研通“疑难数据库(出版商)”最低求助积分说明 633669
版权声明 602627