STU3Net: An Improved U‐Net With Swin Transformer Fusion for Thyroid Nodule Segmentation

计算机科学 人工智能 分割 甲状腺结节 深度学习 模式识别(心理学) 卷积神经网络 甲状腺 医学 内科学
作者
Xiangyu Deng,Zhiyan Dang,Lin Pan
出处
期刊:International Journal of Imaging Systems and Technology [Wiley]
卷期号:34 (5)
标识
DOI:10.1002/ima.23160
摘要

ABSTRACT Thyroid nodules are a common endocrine system disorder for which accurate ultrasound image segmentation is important for evaluation and diagnosis, as well as a critical step in computer‐aided diagnostic systems. However, the accuracy and consistency of segmentation remains a challenging task due to the presence of scattering noise, low contrast and resolution in ultrasound images. Therefore, we propose a deep learning‐based CAD (computer‐aided diagnosis) method, STU 3 Net in this paper, aiming at automatic segmentation of thyroid nodules. The method employs a modified Swin Transformer combined with a CNN encoder, which is capable of extracting morphological features and edge details of thyroid nodules in ultrasound images. In decoding through the features for image reconstruction, we introduce a modified three‐layer U‐Net network with cross‐layer connectivity to further enhance image reduction. This cross‐layer connectivity enhances the network's capture and representation of the contained image feature information by creating skip connections between different layers and merging the detailed information of the shallow network with the abstract information of the deeper network. Through comparison experiments with current mainstream deep learning methods on the TN3K and BUSI datasets, we validate the superiority of the STU 3 Net method in thyroid nodule segmentation performance. The experimental results show that STU 3 Net outperforms most of the mainstream models on the TN3K dataset, with Dice and IoU reaching 0.8368 and 0.7416, respectively, which are significantly better than other methods. The method demonstrates excellent performance on these datasets and provides radiologists with an effective auxiliary tool to accurately detect thyroid nodules in ultrasound images.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
时有落花至完成签到,获得积分10
刚刚
刚刚
无与伦比发布了新的文献求助30
4秒前
6秒前
一人独钓一江秋完成签到,获得积分10
6秒前
8秒前
9秒前
干雅柏发布了新的文献求助10
11秒前
搜集达人应助俏皮芷蕊采纳,获得10
13秒前
上官若男应助sugar采纳,获得10
14秒前
xxxllllll发布了新的文献求助30
14秒前
14秒前
CodeCraft应助wangqiuhong采纳,获得10
15秒前
17秒前
桐桐应助jszhoucl采纳,获得10
17秒前
黄健斌完成签到,获得积分10
18秒前
HarryChan完成签到,获得积分10
20秒前
23秒前
24秒前
24秒前
华仔应助小绵羊采纳,获得10
26秒前
Andema发布了新的文献求助10
27秒前
俏皮芷蕊发布了新的文献求助10
28秒前
29秒前
xiao_niu完成签到,获得积分10
29秒前
liu发布了新的文献求助10
30秒前
大模型应助墨水采纳,获得10
31秒前
cc完成签到,获得积分10
31秒前
Jackson完成签到,获得积分10
31秒前
852应助李茵采纳,获得10
32秒前
郭富城发布了新的文献求助10
32秒前
33秒前
量子星尘发布了新的文献求助10
37秒前
37秒前
Andema完成签到,获得积分10
38秒前
38秒前
老大蒂亚戈应助俏皮芷蕊采纳,获得10
38秒前
搜集达人应助木可采纳,获得10
41秒前
orixero应助wangjue采纳,获得10
42秒前
43秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989444
求助须知:如何正确求助?哪些是违规求助? 3531531
关于积分的说明 11254250
捐赠科研通 3270191
什么是DOI,文献DOI怎么找? 1804901
邀请新用户注册赠送积分活动 882105
科研通“疑难数据库(出版商)”最低求助积分说明 809174