STU3Net: An Improved U‐Net With Swin Transformer Fusion for Thyroid Nodule Segmentation

计算机科学 人工智能 分割 甲状腺结节 深度学习 模式识别(心理学) 卷积神经网络 甲状腺 医学 内科学
作者
Xiangyu Deng,Zhiyan Dang,Lin Pan
出处
期刊:International Journal of Imaging Systems and Technology [Wiley]
卷期号:34 (5)
标识
DOI:10.1002/ima.23160
摘要

ABSTRACT Thyroid nodules are a common endocrine system disorder for which accurate ultrasound image segmentation is important for evaluation and diagnosis, as well as a critical step in computer‐aided diagnostic systems. However, the accuracy and consistency of segmentation remains a challenging task due to the presence of scattering noise, low contrast and resolution in ultrasound images. Therefore, we propose a deep learning‐based CAD (computer‐aided diagnosis) method, STU 3 Net in this paper, aiming at automatic segmentation of thyroid nodules. The method employs a modified Swin Transformer combined with a CNN encoder, which is capable of extracting morphological features and edge details of thyroid nodules in ultrasound images. In decoding through the features for image reconstruction, we introduce a modified three‐layer U‐Net network with cross‐layer connectivity to further enhance image reduction. This cross‐layer connectivity enhances the network's capture and representation of the contained image feature information by creating skip connections between different layers and merging the detailed information of the shallow network with the abstract information of the deeper network. Through comparison experiments with current mainstream deep learning methods on the TN3K and BUSI datasets, we validate the superiority of the STU 3 Net method in thyroid nodule segmentation performance. The experimental results show that STU 3 Net outperforms most of the mainstream models on the TN3K dataset, with Dice and IoU reaching 0.8368 and 0.7416, respectively, which are significantly better than other methods. The method demonstrates excellent performance on these datasets and provides radiologists with an effective auxiliary tool to accurately detect thyroid nodules in ultrasound images.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
Volcano发布了新的文献求助10
2秒前
3秒前
星辰大海应助拓小八采纳,获得10
4秒前
Tao发布了新的文献求助10
5秒前
5秒前
Tangviva1988发布了新的文献求助10
5秒前
阳光沛柔发布了新的文献求助10
6秒前
SYLH应助cyn0762采纳,获得30
7秒前
11秒前
打打应助Tine采纳,获得30
12秒前
研友_VZG7GZ应助EED采纳,获得10
13秒前
缥缈问柳应助wjw采纳,获得10
13秒前
DijiaXu应助朝朝采纳,获得10
15秒前
sanyecai完成签到,获得积分10
15秒前
李健的小迷弟应助高铭泽采纳,获得10
18秒前
Zsl121完成签到,获得积分10
19秒前
19秒前
爆米花应助肖肖采纳,获得10
20秒前
20秒前
冬至完成签到,获得积分10
21秒前
22秒前
shenzhou9完成签到,获得积分10
22秒前
量子星尘发布了新的文献求助10
22秒前
23秒前
lll完成签到,获得积分20
25秒前
欣喜豌豆完成签到,获得积分10
27秒前
彭于晏应助雨过天晴采纳,获得10
27秒前
李健的小迷弟应助唐_采纳,获得10
28秒前
云辞忧发布了新的文献求助10
28秒前
华仔应助Livrik采纳,获得10
28秒前
EED发布了新的文献求助10
29秒前
30秒前
31秒前
32秒前
赘婿应助hhhi采纳,获得10
32秒前
领导范儿应助康康采纳,获得10
33秒前
李健的小迷弟应助blue采纳,获得10
33秒前
35秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3988868
求助须知:如何正确求助?哪些是违规求助? 3531255
关于积分的说明 11253071
捐赠科研通 3269858
什么是DOI,文献DOI怎么找? 1804822
邀请新用户注册赠送积分活动 881994
科研通“疑难数据库(出版商)”最低求助积分说明 809035