STU3Net: An Improved U‐Net With Swin Transformer Fusion for Thyroid Nodule Segmentation

计算机科学 人工智能 分割 甲状腺结节 深度学习 模式识别(心理学) 卷积神经网络 甲状腺 医学 内科学
作者
Xiangyu Deng,Zhiyan Dang,Lin Pan
出处
期刊:International Journal of Imaging Systems and Technology [Wiley]
卷期号:34 (5)
标识
DOI:10.1002/ima.23160
摘要

ABSTRACT Thyroid nodules are a common endocrine system disorder for which accurate ultrasound image segmentation is important for evaluation and diagnosis, as well as a critical step in computer‐aided diagnostic systems. However, the accuracy and consistency of segmentation remains a challenging task due to the presence of scattering noise, low contrast and resolution in ultrasound images. Therefore, we propose a deep learning‐based CAD (computer‐aided diagnosis) method, STU 3 Net in this paper, aiming at automatic segmentation of thyroid nodules. The method employs a modified Swin Transformer combined with a CNN encoder, which is capable of extracting morphological features and edge details of thyroid nodules in ultrasound images. In decoding through the features for image reconstruction, we introduce a modified three‐layer U‐Net network with cross‐layer connectivity to further enhance image reduction. This cross‐layer connectivity enhances the network's capture and representation of the contained image feature information by creating skip connections between different layers and merging the detailed information of the shallow network with the abstract information of the deeper network. Through comparison experiments with current mainstream deep learning methods on the TN3K and BUSI datasets, we validate the superiority of the STU 3 Net method in thyroid nodule segmentation performance. The experimental results show that STU 3 Net outperforms most of the mainstream models on the TN3K dataset, with Dice and IoU reaching 0.8368 and 0.7416, respectively, which are significantly better than other methods. The method demonstrates excellent performance on these datasets and provides radiologists with an effective auxiliary tool to accurately detect thyroid nodules in ultrasound images.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小赵同学发布了新的文献求助10
2秒前
我是老大应助shenlan采纳,获得30
2秒前
zwh发布了新的文献求助30
2秒前
Owen应助HOXXXiii采纳,获得10
4秒前
4秒前
美好的冰蓝完成签到 ,获得积分10
4秒前
任性半鬼完成签到 ,获得积分10
4秒前
Alex完成签到,获得积分10
4秒前
5秒前
5秒前
今后应助Sam采纳,获得10
6秒前
FashionBoy应助我想飞采纳,获得10
7秒前
8秒前
勤奋的立果完成签到 ,获得积分10
9秒前
小明发布了新的文献求助10
9秒前
9秒前
袁浩宇发布了新的文献求助10
10秒前
11秒前
酷波er应助大狼采纳,获得10
11秒前
11秒前
11秒前
12秒前
香蕉觅云应助典雅的俊驰采纳,获得10
12秒前
13秒前
童童发布了新的文献求助10
13秒前
素养哥发布了新的文献求助15
13秒前
yyy发布了新的文献求助10
14秒前
可爱的函函应助默默采纳,获得10
14秒前
Sheng发布了新的文献求助10
16秒前
lili完成签到,获得积分10
16秒前
箱子发布了新的文献求助10
17秒前
慕青应助DJDJDDDJ采纳,获得10
17秒前
17秒前
量子星尘发布了新的文献求助10
17秒前
小白完成签到 ,获得积分10
18秒前
情怀应助茶茶同学采纳,获得10
18秒前
18秒前
19秒前
CADD_Kelvin发布了新的文献求助30
19秒前
小赵同学完成签到,获得积分10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5771462
求助须知:如何正确求助?哪些是违规求助? 5591687
关于积分的说明 15427521
捐赠科研通 4904775
什么是DOI,文献DOI怎么找? 2638990
邀请新用户注册赠送积分活动 1586782
关于科研通互助平台的介绍 1541792