STU3Net: An Improved U‐Net With Swin Transformer Fusion for Thyroid Nodule Segmentation

计算机科学 人工智能 分割 甲状腺结节 深度学习 模式识别(心理学) 卷积神经网络 甲状腺 医学 内科学
作者
Xiangyu Deng,Zhiyan Dang,Lin Pan
出处
期刊:International Journal of Imaging Systems and Technology [Wiley]
卷期号:34 (5)
标识
DOI:10.1002/ima.23160
摘要

ABSTRACT Thyroid nodules are a common endocrine system disorder for which accurate ultrasound image segmentation is important for evaluation and diagnosis, as well as a critical step in computer‐aided diagnostic systems. However, the accuracy and consistency of segmentation remains a challenging task due to the presence of scattering noise, low contrast and resolution in ultrasound images. Therefore, we propose a deep learning‐based CAD (computer‐aided diagnosis) method, STU 3 Net in this paper, aiming at automatic segmentation of thyroid nodules. The method employs a modified Swin Transformer combined with a CNN encoder, which is capable of extracting morphological features and edge details of thyroid nodules in ultrasound images. In decoding through the features for image reconstruction, we introduce a modified three‐layer U‐Net network with cross‐layer connectivity to further enhance image reduction. This cross‐layer connectivity enhances the network's capture and representation of the contained image feature information by creating skip connections between different layers and merging the detailed information of the shallow network with the abstract information of the deeper network. Through comparison experiments with current mainstream deep learning methods on the TN3K and BUSI datasets, we validate the superiority of the STU 3 Net method in thyroid nodule segmentation performance. The experimental results show that STU 3 Net outperforms most of the mainstream models on the TN3K dataset, with Dice and IoU reaching 0.8368 and 0.7416, respectively, which are significantly better than other methods. The method demonstrates excellent performance on these datasets and provides radiologists with an effective auxiliary tool to accurately detect thyroid nodules in ultrasound images.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
SciGPT应助南非的猫采纳,获得10
刚刚
1秒前
花藏影完成签到,获得积分10
1秒前
天真饼干完成签到,获得积分10
1秒前
1秒前
1秒前
12233发布了新的文献求助10
1秒前
2秒前
搜集达人应助何hao采纳,获得10
2秒前
2秒前
sherry关注了科研通微信公众号
3秒前
王司徒发布了新的文献求助10
3秒前
桃子e发布了新的文献求助10
3秒前
虚拟的纸鹤完成签到 ,获得积分10
3秒前
无言发布了新的文献求助10
3秒前
蜉蝣发布了新的文献求助10
4秒前
在荔栀阿完成签到 ,获得积分10
4秒前
4秒前
moonpie完成签到,获得积分10
4秒前
英姑应助旦超采纳,获得10
5秒前
天真饼干发布了新的文献求助10
5秒前
5秒前
SciGPT应助yuyu采纳,获得10
5秒前
KONG发布了新的文献求助10
5秒前
大气摩托发布了新的文献求助10
5秒前
5秒前
清脆语海发布了新的文献求助10
5秒前
6秒前
6秒前
6秒前
hhl完成签到,获得积分10
6秒前
7秒前
8秒前
深情安青应助YANG采纳,获得10
8秒前
一一发布了新的文献求助10
9秒前
张世瑞完成签到,获得积分10
9秒前
9秒前
屎上雕花选手完成签到,获得积分10
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667927
求助须知:如何正确求助?哪些是违规求助? 4888141
关于积分的说明 15122164
捐赠科研通 4826686
什么是DOI,文献DOI怎么找? 2584281
邀请新用户注册赠送积分活动 1538179
关于科研通互助平台的介绍 1496440