STU3Net: An Improved U‐Net With Swin Transformer Fusion for Thyroid Nodule Segmentation

计算机科学 人工智能 分割 甲状腺结节 深度学习 模式识别(心理学) 卷积神经网络 甲状腺 医学 内科学
作者
Xiangyu Deng,Zhiyan Dang,Lin Pan
出处
期刊:International Journal of Imaging Systems and Technology [Wiley]
卷期号:34 (5)
标识
DOI:10.1002/ima.23160
摘要

ABSTRACT Thyroid nodules are a common endocrine system disorder for which accurate ultrasound image segmentation is important for evaluation and diagnosis, as well as a critical step in computer‐aided diagnostic systems. However, the accuracy and consistency of segmentation remains a challenging task due to the presence of scattering noise, low contrast and resolution in ultrasound images. Therefore, we propose a deep learning‐based CAD (computer‐aided diagnosis) method, STU 3 Net in this paper, aiming at automatic segmentation of thyroid nodules. The method employs a modified Swin Transformer combined with a CNN encoder, which is capable of extracting morphological features and edge details of thyroid nodules in ultrasound images. In decoding through the features for image reconstruction, we introduce a modified three‐layer U‐Net network with cross‐layer connectivity to further enhance image reduction. This cross‐layer connectivity enhances the network's capture and representation of the contained image feature information by creating skip connections between different layers and merging the detailed information of the shallow network with the abstract information of the deeper network. Through comparison experiments with current mainstream deep learning methods on the TN3K and BUSI datasets, we validate the superiority of the STU 3 Net method in thyroid nodule segmentation performance. The experimental results show that STU 3 Net outperforms most of the mainstream models on the TN3K dataset, with Dice and IoU reaching 0.8368 and 0.7416, respectively, which are significantly better than other methods. The method demonstrates excellent performance on these datasets and provides radiologists with an effective auxiliary tool to accurately detect thyroid nodules in ultrasound images.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
dddd完成签到,获得积分10
1秒前
zhui发布了新的文献求助10
1秒前
八十发布了新的文献求助10
2秒前
鹿芩完成签到,获得积分10
3秒前
luxxxiu完成签到,获得积分10
5秒前
顺顺关注了科研通微信公众号
5秒前
眼睛大老姆完成签到,获得积分10
5秒前
18275412695完成签到,获得积分10
5秒前
6秒前
科目三应助xjtu采纳,获得10
6秒前
7秒前
7秒前
在水一方应助热情芝麻采纳,获得10
7秒前
害羞的玉米完成签到,获得积分10
7秒前
9秒前
9秒前
李来仪发布了新的文献求助10
10秒前
英姑应助yangyong采纳,获得10
10秒前
10秒前
NexusExplorer应助通通通采纳,获得10
10秒前
liying完成签到,获得积分10
11秒前
11秒前
12秒前
王石雨晨完成签到 ,获得积分10
12秒前
12秒前
18275412695发布了新的文献求助10
12秒前
研0完成签到,获得积分10
13秒前
丁昆发布了新的文献求助10
14秒前
锦墨人生发布了新的文献求助30
15秒前
科研通AI5应助猪猪hero采纳,获得10
15秒前
NexusExplorer应助无情的白桃采纳,获得10
16秒前
sommer12345完成签到 ,获得积分10
16秒前
润润轩轩发布了新的文献求助10
17秒前
丁昆完成签到,获得积分10
19秒前
ding应助热情的阿猫桑采纳,获得10
21秒前
我是老大应助麦麦采纳,获得10
21秒前
Lyven发布了新的文献求助30
21秒前
xinxin完成签到,获得积分10
22秒前
玩命的靖仇完成签到,获得积分10
22秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794