STU3Net: An Improved U‐Net With Swin Transformer Fusion for Thyroid Nodule Segmentation

计算机科学 人工智能 分割 甲状腺结节 深度学习 模式识别(心理学) 卷积神经网络 甲状腺 医学 内科学
作者
Xiangyu Deng,Zhiyan Dang,Lin Pan
出处
期刊:International Journal of Imaging Systems and Technology [Wiley]
卷期号:34 (5)
标识
DOI:10.1002/ima.23160
摘要

ABSTRACT Thyroid nodules are a common endocrine system disorder for which accurate ultrasound image segmentation is important for evaluation and diagnosis, as well as a critical step in computer‐aided diagnostic systems. However, the accuracy and consistency of segmentation remains a challenging task due to the presence of scattering noise, low contrast and resolution in ultrasound images. Therefore, we propose a deep learning‐based CAD (computer‐aided diagnosis) method, STU 3 Net in this paper, aiming at automatic segmentation of thyroid nodules. The method employs a modified Swin Transformer combined with a CNN encoder, which is capable of extracting morphological features and edge details of thyroid nodules in ultrasound images. In decoding through the features for image reconstruction, we introduce a modified three‐layer U‐Net network with cross‐layer connectivity to further enhance image reduction. This cross‐layer connectivity enhances the network's capture and representation of the contained image feature information by creating skip connections between different layers and merging the detailed information of the shallow network with the abstract information of the deeper network. Through comparison experiments with current mainstream deep learning methods on the TN3K and BUSI datasets, we validate the superiority of the STU 3 Net method in thyroid nodule segmentation performance. The experimental results show that STU 3 Net outperforms most of the mainstream models on the TN3K dataset, with Dice and IoU reaching 0.8368 and 0.7416, respectively, which are significantly better than other methods. The method demonstrates excellent performance on these datasets and provides radiologists with an effective auxiliary tool to accurately detect thyroid nodules in ultrasound images.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
尊敬太阳发布了新的文献求助10
2秒前
风中夜天完成签到 ,获得积分10
2秒前
优雅友蕊完成签到,获得积分10
3秒前
gaga完成签到,获得积分10
4秒前
西北孤傲的狼完成签到,获得积分10
5秒前
多边形完成签到 ,获得积分10
7秒前
李cc完成签到,获得积分10
9秒前
9秒前
快帮我找找完成签到,获得积分10
9秒前
xiezhuochun完成签到 ,获得积分10
10秒前
13秒前
aixiaoming0503完成签到,获得积分10
14秒前
forge完成签到,获得积分10
14秒前
15秒前
Distance完成签到,获得积分10
18秒前
蒋念寒发布了新的文献求助10
19秒前
雪雨夜心完成签到,获得积分10
23秒前
又是一年完成签到,获得积分10
24秒前
Distance发布了新的文献求助10
25秒前
李子完成签到 ,获得积分10
26秒前
26秒前
耍酷的指甲油完成签到,获得积分20
27秒前
安小磊完成签到 ,获得积分10
28秒前
雄i完成签到,获得积分10
31秒前
明亮的遥完成签到 ,获得积分0
33秒前
安澜完成签到,获得积分10
33秒前
MG_XSJ应助1111采纳,获得10
36秒前
尊敬太阳完成签到,获得积分20
37秒前
38秒前
量子星尘发布了新的文献求助30
39秒前
健壮安柏完成签到 ,获得积分10
40秒前
Jasper应助忧郁紫翠采纳,获得10
41秒前
41秒前
42秒前
42秒前
rayqiang完成签到,获得积分10
42秒前
42秒前
42秒前
蛋堡完成签到 ,获得积分10
43秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038184
求助须知:如何正确求助?哪些是违规求助? 3575908
关于积分的说明 11373872
捐赠科研通 3305715
什么是DOI,文献DOI怎么找? 1819255
邀请新用户注册赠送积分活动 892662
科研通“疑难数据库(出版商)”最低求助积分说明 815022