STU3Net: An Improved U‐Net With Swin Transformer Fusion for Thyroid Nodule Segmentation

计算机科学 人工智能 分割 甲状腺结节 深度学习 模式识别(心理学) 卷积神经网络 甲状腺 医学 内科学
作者
Xiangyu Deng,Zhiyan Dang,Lin Pan
出处
期刊:International Journal of Imaging Systems and Technology [Wiley]
卷期号:34 (5)
标识
DOI:10.1002/ima.23160
摘要

ABSTRACT Thyroid nodules are a common endocrine system disorder for which accurate ultrasound image segmentation is important for evaluation and diagnosis, as well as a critical step in computer‐aided diagnostic systems. However, the accuracy and consistency of segmentation remains a challenging task due to the presence of scattering noise, low contrast and resolution in ultrasound images. Therefore, we propose a deep learning‐based CAD (computer‐aided diagnosis) method, STU 3 Net in this paper, aiming at automatic segmentation of thyroid nodules. The method employs a modified Swin Transformer combined with a CNN encoder, which is capable of extracting morphological features and edge details of thyroid nodules in ultrasound images. In decoding through the features for image reconstruction, we introduce a modified three‐layer U‐Net network with cross‐layer connectivity to further enhance image reduction. This cross‐layer connectivity enhances the network's capture and representation of the contained image feature information by creating skip connections between different layers and merging the detailed information of the shallow network with the abstract information of the deeper network. Through comparison experiments with current mainstream deep learning methods on the TN3K and BUSI datasets, we validate the superiority of the STU 3 Net method in thyroid nodule segmentation performance. The experimental results show that STU 3 Net outperforms most of the mainstream models on the TN3K dataset, with Dice and IoU reaching 0.8368 and 0.7416, respectively, which are significantly better than other methods. The method demonstrates excellent performance on these datasets and provides radiologists with an effective auxiliary tool to accurately detect thyroid nodules in ultrasound images.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
winky完成签到,获得积分10
刚刚
精明凡双发布了新的文献求助10
1秒前
陈炜康发布了新的文献求助10
1秒前
1秒前
2秒前
2秒前
yellow发布了新的文献求助10
2秒前
2秒前
星火完成签到,获得积分10
2秒前
越红发布了新的文献求助10
3秒前
归尘发布了新的文献求助80
3秒前
陌路完成签到,获得积分10
4秒前
4秒前
han发布了新的文献求助10
4秒前
jiajia发布了新的文献求助10
4秒前
4秒前
魔幻的芝麻完成签到,获得积分20
4秒前
俭朴采柳发布了新的文献求助10
4秒前
yoke完成签到,获得积分10
5秒前
花花发布了新的文献求助10
5秒前
Hello应助pbj采纳,获得10
5秒前
6秒前
soso发布了新的文献求助10
6秒前
6秒前
6秒前
天天快乐应助Cythy采纳,获得10
6秒前
欣新发布了新的文献求助10
6秒前
6秒前
孟一天完成签到,获得积分10
7秒前
贝奥兰迪发布了新的文献求助10
7秒前
8秒前
长安关注了科研通微信公众号
8秒前
From-ZTT完成签到,获得积分10
8秒前
8秒前
英吉利25发布了新的文献求助10
9秒前
共享精神应助Wu采纳,获得10
9秒前
半钱半夏完成签到,获得积分10
10秒前
深情安青应助小丫采纳,获得10
10秒前
10秒前
WZ发布了新的文献求助10
10秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Reliability Monitoring Program 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5340428
求助须知:如何正确求助?哪些是违规求助? 4476928
关于积分的说明 13933312
捐赠科研通 4372740
什么是DOI,文献DOI怎么找? 2402526
邀请新用户注册赠送积分活动 1395409
关于科研通互助平台的介绍 1367489