STU3Net: An Improved U‐Net With Swin Transformer Fusion for Thyroid Nodule Segmentation

计算机科学 人工智能 分割 甲状腺结节 深度学习 模式识别(心理学) 卷积神经网络 甲状腺 医学 内科学
作者
Xiangyu Deng,Zhiyan Dang,Lin Pan
出处
期刊:International Journal of Imaging Systems and Technology [Wiley]
卷期号:34 (5)
标识
DOI:10.1002/ima.23160
摘要

ABSTRACT Thyroid nodules are a common endocrine system disorder for which accurate ultrasound image segmentation is important for evaluation and diagnosis, as well as a critical step in computer‐aided diagnostic systems. However, the accuracy and consistency of segmentation remains a challenging task due to the presence of scattering noise, low contrast and resolution in ultrasound images. Therefore, we propose a deep learning‐based CAD (computer‐aided diagnosis) method, STU 3 Net in this paper, aiming at automatic segmentation of thyroid nodules. The method employs a modified Swin Transformer combined with a CNN encoder, which is capable of extracting morphological features and edge details of thyroid nodules in ultrasound images. In decoding through the features for image reconstruction, we introduce a modified three‐layer U‐Net network with cross‐layer connectivity to further enhance image reduction. This cross‐layer connectivity enhances the network's capture and representation of the contained image feature information by creating skip connections between different layers and merging the detailed information of the shallow network with the abstract information of the deeper network. Through comparison experiments with current mainstream deep learning methods on the TN3K and BUSI datasets, we validate the superiority of the STU 3 Net method in thyroid nodule segmentation performance. The experimental results show that STU 3 Net outperforms most of the mainstream models on the TN3K dataset, with Dice and IoU reaching 0.8368 and 0.7416, respectively, which are significantly better than other methods. The method demonstrates excellent performance on these datasets and provides radiologists with an effective auxiliary tool to accurately detect thyroid nodules in ultrasound images.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
BEGIN完成签到,获得积分10
刚刚
杜琦完成签到,获得积分10
1秒前
1秒前
充电宝应助cadet采纳,获得10
1秒前
1秒前
嘿嘿发布了新的文献求助10
2秒前
高贵书白完成签到,获得积分20
2秒前
聪明凡之应助戈笙gg采纳,获得10
3秒前
sillyboy完成签到,获得积分10
3秒前
科研通AI6应助杨张浩采纳,获得10
3秒前
白白白完成签到,获得积分10
4秒前
苗子发布了新的文献求助10
4秒前
4秒前
小文完成签到 ,获得积分10
4秒前
5秒前
YifanWang应助shinn采纳,获得10
5秒前
高贵书白发布了新的文献求助10
5秒前
天天只会睡大觉完成签到 ,获得积分10
5秒前
司徒文青应助学术辉采纳,获得30
6秒前
拓荒者完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
7秒前
英吉利25发布了新的文献求助80
7秒前
Ava应助白白白采纳,获得10
8秒前
Jasper应助choiyxh采纳,获得10
9秒前
9秒前
爱吃萝卜的Bob完成签到,获得积分10
9秒前
绾宸完成签到,获得积分10
10秒前
10秒前
11秒前
11秒前
CodeCraft应助HHHH采纳,获得10
11秒前
拖把粘十完成签到 ,获得积分10
11秒前
12秒前
12秒前
大模型应助忐忑的惜寒采纳,获得10
13秒前
朴素鸡完成签到,获得积分20
13秒前
Owen应助vic采纳,获得10
14秒前
土豪的梦秋完成签到,获得积分20
15秒前
Tooth7发布了新的文献求助10
15秒前
飘萍过客完成签到,获得积分10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
King Tyrant 720
Lectures in probability theory and mathematical statistics - 3rd Edition 500
The Synthesis of Simplified Analogues of Crambescin B Carboxylic Acid and Their Inhibitory Activity of Voltage-Gated Sodium Channels: New Aspects of Structure–Activity Relationships 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5597309
求助须知:如何正确求助?哪些是违规求助? 4682518
关于积分的说明 14826608
捐赠科研通 4660060
什么是DOI,文献DOI怎么找? 2536496
邀请新用户注册赠送积分活动 1504181
关于科研通互助平台的介绍 1470166