STU3Net: An Improved U‐Net With Swin Transformer Fusion for Thyroid Nodule Segmentation

计算机科学 人工智能 分割 甲状腺结节 深度学习 模式识别(心理学) 卷积神经网络 甲状腺 医学 内科学
作者
Xiangyu Deng,Zhiyan Dang,Lin Pan
出处
期刊:International Journal of Imaging Systems and Technology [Wiley]
卷期号:34 (5)
标识
DOI:10.1002/ima.23160
摘要

ABSTRACT Thyroid nodules are a common endocrine system disorder for which accurate ultrasound image segmentation is important for evaluation and diagnosis, as well as a critical step in computer‐aided diagnostic systems. However, the accuracy and consistency of segmentation remains a challenging task due to the presence of scattering noise, low contrast and resolution in ultrasound images. Therefore, we propose a deep learning‐based CAD (computer‐aided diagnosis) method, STU 3 Net in this paper, aiming at automatic segmentation of thyroid nodules. The method employs a modified Swin Transformer combined with a CNN encoder, which is capable of extracting morphological features and edge details of thyroid nodules in ultrasound images. In decoding through the features for image reconstruction, we introduce a modified three‐layer U‐Net network with cross‐layer connectivity to further enhance image reduction. This cross‐layer connectivity enhances the network's capture and representation of the contained image feature information by creating skip connections between different layers and merging the detailed information of the shallow network with the abstract information of the deeper network. Through comparison experiments with current mainstream deep learning methods on the TN3K and BUSI datasets, we validate the superiority of the STU 3 Net method in thyroid nodule segmentation performance. The experimental results show that STU 3 Net outperforms most of the mainstream models on the TN3K dataset, with Dice and IoU reaching 0.8368 and 0.7416, respectively, which are significantly better than other methods. The method demonstrates excellent performance on these datasets and provides radiologists with an effective auxiliary tool to accurately detect thyroid nodules in ultrasound images.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
马騳骉完成签到,获得积分10
1秒前
李健的粉丝团团长应助LX采纳,获得10
1秒前
盛夏细闻完成签到,获得积分10
1秒前
陌上尘发布了新的文献求助20
2秒前
夕荀发布了新的文献求助10
4秒前
Accepted应助XBL采纳,获得10
4秒前
爆米花应助edward采纳,获得10
4秒前
YY完成签到,获得积分10
4秒前
桐桐应助阿嚏采纳,获得30
4秒前
5秒前
6秒前
半烟发布了新的文献求助10
6秒前
雪白胡萝卜完成签到 ,获得积分10
6秒前
YY发布了新的文献求助30
7秒前
危机的河马完成签到,获得积分10
7秒前
高贵花瓣应助sssss采纳,获得10
8秒前
8秒前
顾矜应助双丁宝贝采纳,获得30
9秒前
一又二分之一完成签到,获得积分10
9秒前
10秒前
wanci应助caicai采纳,获得10
10秒前
搜集达人应助秃顶双马尾采纳,获得10
11秒前
11秒前
彭于晏应助小毛驴要加油采纳,获得10
11秒前
miao完成签到,获得积分10
12秒前
12秒前
淡淡友瑶完成签到,获得积分10
12秒前
12秒前
bkagyin应助淡定鸿涛采纳,获得10
12秒前
领导范儿应助科小辉采纳,获得10
12秒前
LX发布了新的文献求助10
13秒前
14秒前
ccx发布了新的文献求助10
15秒前
曾旭发布了新的文献求助20
15秒前
15秒前
狂奔的蜗牛完成签到,获得积分10
15秒前
16秒前
17秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3149723
求助须知:如何正确求助?哪些是违规求助? 2800743
关于积分的说明 7841670
捐赠科研通 2458302
什么是DOI,文献DOI怎么找? 1308386
科研通“疑难数据库(出版商)”最低求助积分说明 628498
版权声明 601706