STU3Net: An Improved U‐Net With Swin Transformer Fusion for Thyroid Nodule Segmentation

计算机科学 人工智能 分割 甲状腺结节 深度学习 模式识别(心理学) 卷积神经网络 甲状腺 医学 内科学
作者
Xiangyu Deng,Zhiyan Dang,Lin Pan
出处
期刊:International Journal of Imaging Systems and Technology [Wiley]
卷期号:34 (5)
标识
DOI:10.1002/ima.23160
摘要

ABSTRACT Thyroid nodules are a common endocrine system disorder for which accurate ultrasound image segmentation is important for evaluation and diagnosis, as well as a critical step in computer‐aided diagnostic systems. However, the accuracy and consistency of segmentation remains a challenging task due to the presence of scattering noise, low contrast and resolution in ultrasound images. Therefore, we propose a deep learning‐based CAD (computer‐aided diagnosis) method, STU 3 Net in this paper, aiming at automatic segmentation of thyroid nodules. The method employs a modified Swin Transformer combined with a CNN encoder, which is capable of extracting morphological features and edge details of thyroid nodules in ultrasound images. In decoding through the features for image reconstruction, we introduce a modified three‐layer U‐Net network with cross‐layer connectivity to further enhance image reduction. This cross‐layer connectivity enhances the network's capture and representation of the contained image feature information by creating skip connections between different layers and merging the detailed information of the shallow network with the abstract information of the deeper network. Through comparison experiments with current mainstream deep learning methods on the TN3K and BUSI datasets, we validate the superiority of the STU 3 Net method in thyroid nodule segmentation performance. The experimental results show that STU 3 Net outperforms most of the mainstream models on the TN3K dataset, with Dice and IoU reaching 0.8368 and 0.7416, respectively, which are significantly better than other methods. The method demonstrates excellent performance on these datasets and provides radiologists with an effective auxiliary tool to accurately detect thyroid nodules in ultrasound images.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
啦啦咔嘞完成签到,获得积分10
刚刚
代秋完成签到,获得积分10
刚刚
李健应助乐观笑南采纳,获得10
1秒前
好久不见发布了新的文献求助10
2秒前
木长发布了新的文献求助10
2秒前
bilin发布了新的文献求助10
2秒前
领导范儿应助TT001采纳,获得10
2秒前
123完成签到,获得积分10
3秒前
赵云完成签到,获得积分10
3秒前
4秒前
万能图书馆应助zhiping采纳,获得10
4秒前
嗯嗯发布了新的文献求助10
5秒前
酷波er应助lsx采纳,获得30
6秒前
小二郎应助MIZU采纳,获得30
7秒前
怡心亭完成签到 ,获得积分0
7秒前
7秒前
专注的春燕完成签到,获得积分20
8秒前
小快乐完成签到,获得积分10
8秒前
8秒前
10秒前
11秒前
野肆完成签到,获得积分10
12秒前
席孤风发布了新的文献求助10
13秒前
嘿嘿发布了新的文献求助10
15秒前
sword完成签到,获得积分10
17秒前
落寞妍发布了新的文献求助10
17秒前
量子星尘发布了新的文献求助10
19秒前
哈哈哈完成签到 ,获得积分10
19秒前
木长完成签到,获得积分10
20秒前
20秒前
隐形曼青应助bilin采纳,获得10
22秒前
SciGPT应助lameliu采纳,获得10
22秒前
K2L发布了新的文献求助10
25秒前
充电宝应助席孤风采纳,获得10
27秒前
husiqi_547完成签到,获得积分10
27秒前
英姑应助磕盐耇采纳,获得10
27秒前
淇媛完成签到,获得积分20
28秒前
zhiping完成签到,获得积分10
28秒前
脑洞疼应助小鲤鱼在睡觉采纳,获得10
28秒前
朴实的小懒虫完成签到,获得积分10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5684791
求助须知:如何正确求助?哪些是违规求助? 5038954
关于积分的说明 15185395
捐赠科研通 4843938
什么是DOI,文献DOI怎么找? 2597034
邀请新用户注册赠送积分活动 1549618
关于科研通互助平台的介绍 1508109