Transformer Graph Variational Autoencoder for Generative Molecular Design

计算机科学 自编码 变压器 分子图 新颖性 平滑的 生成语法 人工智能 图形 机器学习 理论计算机科学 人工神经网络 工程类 电气工程 哲学 电压 计算机视觉 神学
作者
Trieu Nguyen,Aleksandra Karolak
标识
DOI:10.1101/2024.07.22.604603
摘要

ABSTRACT In the field of drug discovery, the generation of new molecules with desirable properties remains a critical challenge. Traditional methods often rely on SMILES (Simplified Molecular Input Line Entry System) representations for molecular input data, which can limit the diversity and novelty of generated molecules. To address this, we present the Transformer Graph Variational Autoencoder (TGVAE), an innovative AI model that employs molecular graphs as input data, thus captures the complex structural relationships within molecules more effectively than string models. To enhance molecular generation capabilities, TGVAE combines a Transformer, Graph Neural Network (GNN), and Variational Autoencoder (VAE). Additionally, we address common issues like over-smoothing in training GNNs and posterior collapse in VAE to ensure robust training and improve the generation of chemically valid and diverse molecular structures. Our results demonstrate that TGVAE outperforms existing approaches, generating a larger collection of diverse molecules and discovering structures that were previously unexplored. This advancement not only brings more possibilities for drug discovery but also sets a new level for the use of AI in molecular generation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zzy发布了新的文献求助10
刚刚
Orange应助科研小孟采纳,获得10
刚刚
十一发布了新的文献求助10
1秒前
1秒前
2秒前
不安若之发布了新的文献求助10
2秒前
rougelike完成签到,获得积分10
3秒前
阮煜城完成签到,获得积分10
3秒前
快乐源泉发布了新的文献求助10
4秒前
fanfan完成签到,获得积分10
4秒前
4秒前
jiabaoyu完成签到,获得积分10
5秒前
5秒前
阿健发布了新的文献求助10
5秒前
华仔应助活泼宛海采纳,获得10
6秒前
zhao完成签到,获得积分10
6秒前
阮煜城发布了新的文献求助10
6秒前
7秒前
WU发布了新的文献求助20
7秒前
jiabaoyu发布了新的文献求助10
7秒前
7秒前
8秒前
8秒前
hejingyan关注了科研通微信公众号
9秒前
9秒前
顾矜应助Cloud采纳,获得10
10秒前
11秒前
银杏叶发布了新的文献求助20
11秒前
英姑应助rarfen采纳,获得10
11秒前
科研通AI6.1应助能干水杯采纳,获得10
12秒前
小蘑菇应助RE采纳,获得10
12秒前
学习新思想完成签到,获得积分10
13秒前
13秒前
量子星尘发布了新的文献求助10
13秒前
Awei发布了新的文献求助10
13秒前
lingmuhuahua发布了新的文献求助10
14秒前
14秒前
14秒前
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5760069
求助须知:如何正确求助?哪些是违规求助? 5523381
关于积分的说明 15396422
捐赠科研通 4896997
什么是DOI,文献DOI怎么找? 2634002
邀请新用户注册赠送积分活动 1582062
关于科研通互助平台的介绍 1537519