Augmented reality with algorithm animation and their effect on students’ emotions

计算机科学 增强现实 无聊 人机交互 面子(社会学概念) 编码(集合论) 背景(考古学) 抽象 感觉 动画 多媒体 人工智能 计算机图形学(图像) 心理学 社会心理学 社会科学 古生物学 哲学 集合(抽象数据类型) 认识论 社会学 生物 程序设计语言
作者
Maximiliano Paredes Velasco,J. Ángel Velázquez‐Iturbide,Mónica Daniela Gómez Ríos
出处
期刊:Multimedia Tools and Applications [Springer Nature]
卷期号:82 (8): 11819-11845 被引量:7
标识
DOI:10.1007/s11042-022-13679-1
摘要

Abstract Algorithm animations are a resource that assists in learning algorithms by visually displaying the behavior of an algorithm at a higher level of abstraction than source code. On the other hand, augmented reality is a technology that allows extending visible reality in a mobile device, which can result in greater emotional well-being for the student. However, it is not clear how to integrate algorithm animations with augmented reality. The article makes two contributions to this concern. On the one hand, we describe an architecture that allows generating interactive algorithm animations, integrating them appropriately in the context of immersive augmented reality. This way the user can watch the source code of the algorithm, augmented with textual explanations, visualizations and animations of its behavior. We illustrate the use of the architecture by instantiating it to the well-known Dijkstra’s algorithm, resulting in an augmented reality tool that generates text, 2D and 3D visualizations. On the other hand, the influence of the tool on the user’s emotions has been studied by conducting an experience with face-to-face and online students. The results show that, with the joint use of augmented reality and visualizations, the students: experienced significantly more positive than negative emotions, experienced more agitation and stimulation than inactivity or calm, enjoyed as much as they expected, and their feeling of boredom decreased during the experience. However, students felt anxiety from the beginning and it increased with the use of augmented reality. The study also found that the face-to-face or online learning model influences emotions and learning outcomes with augmented reality.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
工藤新一发布了新的文献求助10
1秒前
2秒前
yy完成签到,获得积分10
2秒前
星如繁花发布了新的文献求助10
2秒前
3秒前
3秒前
Verano_4完成签到,获得积分10
3秒前
a龙发布了新的文献求助10
4秒前
zzz完成签到,获得积分10
4秒前
xiaohongmao发布了新的文献求助10
5秒前
自由完成签到,获得积分10
6秒前
zwip_xes完成签到,获得积分10
6秒前
楼松思完成签到,获得积分10
7秒前
8秒前
灵巧冥发布了新的文献求助10
8秒前
SciGPT应助小中采纳,获得10
8秒前
Tachibana完成签到,获得积分10
9秒前
fruchtjelly完成签到,获得积分20
9秒前
11秒前
科研小白发布了新的文献求助10
11秒前
宇文书翠完成签到,获得积分10
11秒前
12秒前
科研通AI2S应助俭朴的期待采纳,获得10
13秒前
Lucas应助xiaohongmao采纳,获得10
13秒前
fruchtjelly发布了新的文献求助10
14秒前
梅子酒发布了新的文献求助10
15秒前
JamesPei应助xh采纳,获得10
16秒前
Hello应助兴奋的魂幽采纳,获得10
16秒前
17秒前
Eden完成签到,获得积分10
17秒前
所所应助科研通管家采纳,获得30
18秒前
科研通AI2S应助科研通管家采纳,获得10
18秒前
小马甲应助科研通管家采纳,获得30
18秒前
Orange应助工藤新一采纳,获得10
18秒前
20秒前
20秒前
人间生巧完成签到,获得积分10
21秒前
Sunshine完成签到,获得积分0
21秒前
22秒前
高高魂幽完成签到,获得积分10
22秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Внешняя политика КНР: о сущности внешнеполитического курса современного китайского руководства 500
Revolution und Konterrevolution in China [by A. Losowsky] 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3123085
求助须知:如何正确求助?哪些是违规求助? 2773583
关于积分的说明 7718515
捐赠科研通 2429199
什么是DOI,文献DOI怎么找? 1290188
科研通“疑难数据库(出版商)”最低求助积分说明 621766
版权声明 600220