Abnormal respiratory patterns classifier may contribute to large-scale screening of people infected with COVID-19 in an accurate and unobtrusive manner

呼吸急促 2019年冠状病毒病(COVID-19) 计算机科学 人工智能 呼吸系统 分类器(UML) 互联网 严重急性呼吸综合征冠状病毒2型(SARS-CoV-2) 医学 机器学习 病理 内科学 万维网 传染病(医学专业) 疾病 心动过速
作者
Yunlu Wang,Menghan Hu,Qingli Li,Xiao-Ping Zhang,Guangtao Zhai,Nan Yao
出处
期刊:Cornell University - arXiv 被引量:33
标识
DOI:10.48550/arxiv.2002.05534
摘要

Research significance: The extended version of this paper has been accepted by IEEE Internet of Things journal (DOI: 10.1109/JIOT.2020.2991456), please cite the journal version. During the epidemic prevention and control period, our study can be helpful in prognosis, diagnosis and screening for the patients infected with COVID-19 (the novel coronavirus) based on breathing characteristics. According to the latest clinical research, the respiratory pattern of COVID-19 is different from the respiratory patterns of flu and the common cold. One significant symptom that occurs in the COVID-19 is Tachypnea. People infected with COVID-19 have more rapid respiration. Our study can be utilized to distinguish various respiratory patterns and our device can be preliminarily put to practical use. Demo videos of this method working in situations of one subject and two subjects can be downloaded online. Research details: Accurate detection of the unexpected abnormal respiratory pattern of people in a remote and unobtrusive manner has great significance. In this work, we innovatively capitalize on depth camera and deep learning to achieve this goal. The challenges in this task are twofold: the amount of real-world data is not enough for training to get the deep model; and the intra-class variation of different types of respiratory patterns is large and the outer-class variation is small. In this paper, considering the characteristics of actual respiratory signals, a novel and efficient Respiratory Simulation Model (RSM) is first proposed to fill the gap between the large amount of training data and scarce real-world data. The proposed deep model and the modeling ideas have the great potential to be extended to large scale applications such as public places, sleep scenario, and office environment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
6秒前
lizef完成签到 ,获得积分10
9秒前
Zhiyang Lu完成签到,获得积分10
11秒前
1111chen完成签到 ,获得积分10
13秒前
xu完成签到 ,获得积分10
14秒前
可靠的雪碧完成签到 ,获得积分10
15秒前
01259完成签到 ,获得积分10
33秒前
43秒前
Alone离殇完成签到 ,获得积分10
43秒前
笨笨青筠完成签到 ,获得积分10
50秒前
淡如水完成签到 ,获得积分10
50秒前
nengzou完成签到 ,获得积分10
50秒前
Zzy完成签到 ,获得积分10
51秒前
桐桐应助迷人尔蓝采纳,获得10
1分钟前
zhaoxiaonuan完成签到,获得积分10
1分钟前
60完成签到,获得积分10
1分钟前
木头人呐完成签到 ,获得积分10
1分钟前
柒八染完成签到 ,获得积分10
1分钟前
研友_Z60x5L完成签到 ,获得积分10
1分钟前
研友_VZG7GZ应助科研通管家采纳,获得10
1分钟前
吉祥发布了新的文献求助10
1分钟前
科目三三次郎完成签到 ,获得积分10
1分钟前
1分钟前
huangrui完成签到 ,获得积分10
1分钟前
空洛完成签到 ,获得积分10
1分钟前
wanghao完成签到 ,获得积分10
1分钟前
吉祥完成签到,获得积分10
1分钟前
dypdyp完成签到 ,获得积分10
1分钟前
1分钟前
无辜的行云完成签到 ,获得积分0
1分钟前
嘒彼小星完成签到 ,获得积分10
1分钟前
迷人尔蓝发布了新的文献求助10
1分钟前
多边形完成签到 ,获得积分10
1分钟前
2分钟前
zhangjianzeng完成签到 ,获得积分10
2分钟前
kkk完成签到 ,获得积分10
2分钟前
gyhk完成签到,获得积分10
2分钟前
在水一方应助缥缈映安采纳,获得10
2分钟前
leo完成签到,获得积分10
2分钟前
看文献完成签到,获得积分10
2分钟前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139656
求助须知:如何正确求助?哪些是违规求助? 2790535
关于积分的说明 7795568
捐赠科研通 2446980
什么是DOI,文献DOI怎么找? 1301543
科研通“疑难数据库(出版商)”最低求助积分说明 626264
版权声明 601176