Defect Image Sample Generation With GAN for Improving Defect Recognition

人工智能 计算机科学 生成语法 深度学习 图像(数学) 集合(抽象数据类型) 模式识别(心理学) 数据集 字错误率 程序设计语言
作者
Shuanlong Niu,Bin Li,Xinggang Wang,Hui Lin
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:: 1-12 被引量:159
标识
DOI:10.1109/tase.2020.2967415
摘要

This article aims to improve deep-learning-based surface defect recognition. Owing to the insufficiency of the defect images in practical production lines and the high cost of labeling, it is difficult to obtain a sufficient defect data set in terms of diversity and quantity. A new generation method called surface defect-generation adversarial network (SDGAN), which employs generative adversarial networks (GANs), is proposed to generate defect images using a large number of defect-free images from industrial sites. Experiments show that the defect images generated by the SDGAN have better image quality and diversity than those generated by the state-of-the-art methods. The SDGAN is applied to expand the commutator cylinder surface defect image data sets with and without labels (referred to as the CCSD-L and CCSD-NL data sets, respectively). Regarding anomaly recognition, a 1.77% error rate and a 49.43% relative improvement (IMP) for the CCSD-NL defect data set are obtained. Regarding defect classification, a 0.74% error rate and a 57.47% IMP for the CCSD-L defect data set are achieved. Moreover, defect classification trained on the images augmented by the SDGAN is robust to uneven and poor lighting conditions. Note to Practitioners-This article proposes a method of defect image generation to address the lack of industrial defect images. Traditional defect recognition methods have two disadvantages: different types of defects require different algorithms and handcrafted features are deficient. Defect recognition using deep learning can solve the above problems. However, deep learning requires a plethora of images, and the number of industrial defect images cannot meet this requirement. We propose a new defect image-generation method called SDGAN to generate a defect image data set that balances diversity and authenticity. In practice, we employ a large number of defect-free images to generate a large number of defect images using our method to expand the industry defect-free image data set. Then, the augmented defect data set is used to build a deep-learning defect recognition model. Experiments show that the accuracy of defect recognition can be significantly improved by building a deep-learning defect recognition model using the augmented data set. Therefore, deep learning can achieve excellent performance in defect recognition with a limited number of defect images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隐形大白发布了新的文献求助10
刚刚
学术版7e完成签到,获得积分20
1秒前
pipi发布了新的文献求助10
2秒前
2秒前
3秒前
dandan发布了新的文献求助20
3秒前
4秒前
wbn1212发布了新的文献求助10
8秒前
马66发布了新的文献求助10
8秒前
卢静静发布了新的文献求助10
8秒前
科研论文的狗完成签到,获得积分10
9秒前
9秒前
9秒前
10秒前
张利双发布了新的文献求助10
11秒前
11秒前
领导范儿应助rrrrr采纳,获得10
12秒前
李爱国应助RoKing采纳,获得10
12秒前
香蕉觅云应助小黄采纳,获得10
13秒前
clone2012完成签到,获得积分10
14秒前
成就映秋发布了新的文献求助10
14秒前
14秒前
幸运海星发布了新的文献求助10
15秒前
诸葛天发布了新的文献求助30
15秒前
16秒前
17秒前
17秒前
18秒前
18秒前
Daniel911发布了新的文献求助10
19秒前
HHHAN发布了新的文献求助10
20秒前
乐观小之应助ruohanyu采纳,获得10
20秒前
RoKing完成签到,获得积分20
21秒前
ailemonmint发布了新的文献求助10
22秒前
朴实雨竹发布了新的文献求助10
22秒前
rrrrr发布了新的文献求助10
23秒前
刘刘宇航发布了新的文献求助10
23秒前
zhuxd完成签到,获得积分10
23秒前
赘婿应助GAO采纳,获得10
24秒前
tttt完成签到 ,获得积分10
25秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967722
求助须知:如何正确求助?哪些是违规求助? 3512889
关于积分的说明 11165380
捐赠科研通 3247919
什么是DOI,文献DOI怎么找? 1794067
邀请新用户注册赠送积分活动 874836
科研通“疑难数据库(出版商)”最低求助积分说明 804578