亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Defect Image Sample Generation With GAN for Improving Defect Recognition

人工智能 计算机科学 生成语法 深度学习 图像(数学) 集合(抽象数据类型) 模式识别(心理学) 数据集 字错误率 程序设计语言
作者
Shuanlong Niu,Bin Li,Xinggang Wang,Hui Lin
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:: 1-12 被引量:63
标识
DOI:10.1109/tase.2020.2967415
摘要

This article aims to improve deep-learning-based surface defect recognition. Owing to the insufficiency of the defect images in practical production lines and the high cost of labeling, it is difficult to obtain a sufficient defect data set in terms of diversity and quantity. A new generation method called surface defect-generation adversarial network (SDGAN), which employs generative adversarial networks (GANs), is proposed to generate defect images using a large number of defect-free images from industrial sites. Experiments show that the defect images generated by the SDGAN have better image quality and diversity than those generated by the state-of-the-art methods. The SDGAN is applied to expand the commutator cylinder surface defect image data sets with and without labels (referred to as the CCSD-L and CCSD-NL data sets, respectively). Regarding anomaly recognition, a 1.77% error rate and a 49.43% relative improvement (IMP) for the CCSD-NL defect data set are obtained. Regarding defect classification, a 0.74% error rate and a 57.47% IMP for the CCSD-L defect data set are achieved. Moreover, defect classification trained on the images augmented by the SDGAN is robust to uneven and poor lighting conditions. Note to Practitioners-This article proposes a method of defect image generation to address the lack of industrial defect images. Traditional defect recognition methods have two disadvantages: different types of defects require different algorithms and handcrafted features are deficient. Defect recognition using deep learning can solve the above problems. However, deep learning requires a plethora of images, and the number of industrial defect images cannot meet this requirement. We propose a new defect image-generation method called SDGAN to generate a defect image data set that balances diversity and authenticity. In practice, we employ a large number of defect-free images to generate a large number of defect images using our method to expand the industry defect-free image data set. Then, the augmented defect data set is used to build a deep-learning defect recognition model. Experiments show that the accuracy of defect recognition can be significantly improved by building a deep-learning defect recognition model using the augmented data set. Therefore, deep learning can achieve excellent performance in defect recognition with a limited number of defect images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
魏白晴完成签到,获得积分10
3秒前
川藏客完成签到 ,获得积分10
20秒前
爱静静应助科研通管家采纳,获得10
59秒前
爱静静应助科研通管家采纳,获得10
59秒前
59秒前
2分钟前
Eatanicecube完成签到,获得积分10
2分钟前
juan完成签到 ,获得积分10
2分钟前
Raunio完成签到,获得积分10
2分钟前
lhy12345完成签到,获得积分10
3分钟前
咳咳哼完成签到,获得积分10
3分钟前
东海帝王发布了新的文献求助10
4分钟前
星辰大海应助东海帝王采纳,获得10
4分钟前
乐乐应助科研通管家采纳,获得10
4分钟前
hhhhhardboy完成签到,获得积分20
5分钟前
hhhhhardboy发布了新的文献求助20
5分钟前
随机子应助一杯茶采纳,获得10
5分钟前
6分钟前
充电宝应助hhhhhardboy采纳,获得10
6分钟前
Jenny完成签到,获得积分10
7分钟前
一杯茶发布了新的文献求助10
7分钟前
7分钟前
大模型应助糊涂的清醒者采纳,获得10
7分钟前
8分钟前
8分钟前
8分钟前
一杯茶发布了新的文献求助10
9分钟前
科研通AI2S应助悦耳十三采纳,获得10
9分钟前
9分钟前
10分钟前
10分钟前
魔幻的从阳完成签到,获得积分10
10分钟前
李健应助一杯茶采纳,获得10
10分钟前
10分钟前
10分钟前
11分钟前
zxt12305313完成签到 ,获得积分10
11分钟前
11分钟前
12分钟前
一杯茶发布了新的文献求助10
12分钟前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
Briefe aus Shanghai 1946‒1952 (Dokumente eines Kulturschocks) 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Актуализированная стратиграфическая схема триасовых отложений Прикаспийского региона. Объяснительная записка 360
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3167188
求助须知:如何正确求助?哪些是违规求助? 2818687
关于积分的说明 7921881
捐赠科研通 2478444
什么是DOI,文献DOI怎么找? 1320323
科研通“疑难数据库(出版商)”最低求助积分说明 632748
版权声明 602438