亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Defect Image Sample Generation With GAN for Improving Defect Recognition

人工智能 计算机科学 生成语法 深度学习 图像(数学) 集合(抽象数据类型) 模式识别(心理学) 数据集 字错误率 程序设计语言
作者
Shuanlong Niu,Bin Li,Xinggang Wang,Hui Lin
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:: 1-12 被引量:159
标识
DOI:10.1109/tase.2020.2967415
摘要

This article aims to improve deep-learning-based surface defect recognition. Owing to the insufficiency of the defect images in practical production lines and the high cost of labeling, it is difficult to obtain a sufficient defect data set in terms of diversity and quantity. A new generation method called surface defect-generation adversarial network (SDGAN), which employs generative adversarial networks (GANs), is proposed to generate defect images using a large number of defect-free images from industrial sites. Experiments show that the defect images generated by the SDGAN have better image quality and diversity than those generated by the state-of-the-art methods. The SDGAN is applied to expand the commutator cylinder surface defect image data sets with and without labels (referred to as the CCSD-L and CCSD-NL data sets, respectively). Regarding anomaly recognition, a 1.77% error rate and a 49.43% relative improvement (IMP) for the CCSD-NL defect data set are obtained. Regarding defect classification, a 0.74% error rate and a 57.47% IMP for the CCSD-L defect data set are achieved. Moreover, defect classification trained on the images augmented by the SDGAN is robust to uneven and poor lighting conditions. Note to Practitioners-This article proposes a method of defect image generation to address the lack of industrial defect images. Traditional defect recognition methods have two disadvantages: different types of defects require different algorithms and handcrafted features are deficient. Defect recognition using deep learning can solve the above problems. However, deep learning requires a plethora of images, and the number of industrial defect images cannot meet this requirement. We propose a new defect image-generation method called SDGAN to generate a defect image data set that balances diversity and authenticity. In practice, we employ a large number of defect-free images to generate a large number of defect images using our method to expand the industry defect-free image data set. Then, the augmented defect data set is used to build a deep-learning defect recognition model. Experiments show that the accuracy of defect recognition can be significantly improved by building a deep-learning defect recognition model using the augmented data set. Therefore, deep learning can achieve excellent performance in defect recognition with a limited number of defect images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
8秒前
zztop发布了新的文献求助10
8秒前
ZanE完成签到,获得积分10
9秒前
11秒前
和和和完成签到,获得积分10
11秒前
华仔应助沉默的倔驴采纳,获得10
16秒前
nanhe698发布了新的文献求助10
17秒前
Fan完成签到 ,获得积分0
23秒前
26秒前
nanhe698完成签到,获得积分10
26秒前
35秒前
39秒前
43秒前
48秒前
49秒前
英姑应助沉默的倔驴采纳,获得10
51秒前
52秒前
无000发布了新的文献求助10
54秒前
上官若男应助无000采纳,获得10
1分钟前
1分钟前
1分钟前
黑神白了发布了新的文献求助10
1分钟前
utopia发布了新的文献求助10
1分钟前
Omni完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
曹国庆完成签到 ,获得积分10
1分钟前
1分钟前
我是老大应助沉默的倔驴采纳,获得10
1分钟前
西柚柠檬完成签到 ,获得积分10
1分钟前
遥远发布了新的文献求助10
1分钟前
传奇3应助沉默的倔驴采纳,获得10
2分钟前
xdm完成签到,获得积分10
2分钟前
充电宝应助科研通管家采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
zxcvvbb1001完成签到 ,获得积分10
2分钟前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5746628
求助须知:如何正确求助?哪些是违规求助? 5437255
关于积分的说明 15355719
捐赠科研通 4886684
什么是DOI,文献DOI怎么找? 2627339
邀请新用户注册赠送积分活动 1575825
关于科研通互助平台的介绍 1532573