卵巢癌
小RNA
基因敲除
癌症研究
间充质干细胞
生物
转染
细胞凋亡
细胞生长
癌症
细胞培养
细胞生物学
基因
遗传学
作者
Lei Chang,Junying Zhou,Wanjia Tian,Mengyu Chen,Ruixia Guo,Ningjing Lei
出处
期刊:Research Square - Research Square
日期:2020-12-11
标识
DOI:10.21203/rs.3.rs-125335/v1
摘要
Abstract Background Extracellular vesicle (EV) that delivered microRNAs (miRNAs) have been found as the important biomarkers participating in the pathological mechanism of ovarian cancer. Consequently, this study sought to examine the underlying mechanism of mesenchymal stem cell (MSC)-derived EVs containing miR-4488 in ovarian cancer. Methods The normal ovarian tissues and ovarian cancer tissues were extracted, and the information of MSC-EV miRNA was obtained by Bioinformatics analysis. RT-qPCR and western blot analysis were applied to detect miR-4488 and α/β-hydrolase domain-containing (ABHD)8 expression followed by determination of relationship between miR-4488 and ABHD8 by dual-luciferase reporter assay. After transfection with different plasmids and treatment with DMSO or GW4869 (inhibitor of EV), the regulatory roles of MSC-EV-miR-4488 in invasion, proliferation, apoptosis, and migration of cancer cells were explored. Besides, xenograft tumor in nude mice was conducted to explore the role of miR-4488 and ABHD8 in ovarian cancer in vivo . Results miR-4488 was poorly expressed and ABHD8 was highly expressed in ovarian cancer cells and tissues. ABHD8 was a target gene of miR-4488 while the knockdown of ABHD8 resulted in the suppression of proliferation, invasion, and migration while promoting the apoptosis of cancer cells. Functionally, MSC-EV-derived miR-4488 inhibited the expression of ABHD8. Additionally, miR-4488 over-expressed in MSC-EVs inhibited the cell proliferation, invasion, and migration through down-regulation of ABHD8 expression. At last, these in vitro findings were also confirmed in vivo . Conclusion To summarize, miR-4488 overexpressed in MSC-EVs suppressed ABHD8 expression to inhibit the cancer cell proliferation, invasion, and migration, thus suppressing ovarian cancer.
科研通智能强力驱动
Strongly Powered by AbleSci AI