Predictive Role of Tumor Budding in T1 Colorectal Cancer Lymph Node Metastasis

医学 斯科普斯 结直肠癌 肿瘤科 转移 瘤芽 淋巴结 淋巴结转移 内科学 癌症 梅德林 政治学 法学
作者
Libin Huang,Tinghan Yang,Hai‐Ning Chen
出处
期刊:Gastroenterology [Elsevier]
卷期号:161 (2): 732-733 被引量:6
标识
DOI:10.1053/j.gastro.2020.12.053
摘要

We read with interest the study by Kudo et al,1Kudo S.E. et al.Gastroenterology. 2021; 160: 1075-1084Abstract Full Text Full Text PDF PubMed Scopus (22) Google Scholar in which authors developed an artificial intelligence (AI) system to predict lymph node metastasis in T1 colorectal cancer. It provided a novel AI system that could help to prevent unnecessary extend surgeries. We noticed that the system was developed and validated by separate cohorts according to TRIPOD statement,2Collins G.S. et al.Br J Cancer. 2015; 112: 251-259Crossref PubMed Scopus (46) Google Scholar which would ensure the validity of artificial neural network (ANN) model. However, there are a few concerns that merit further exploration. First, tumor budding was defined as an important risk factor of lymph node metastasis in T1 colorectal cancer in many recent studies and guidelines.3Backes Y. et al.as. Gastroenterology. 2018; 154: 1647-1659Abstract Full Text Full Text PDF PubMed Scopus (29) Google Scholar,4NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines®) (Version 1.2019).www.nccn.org/professionals/physician_gls/f_guidelines.aspDate: 2019Google Scholar In this study, however, Kudo et al1Kudo S.E. et al.Gastroenterology. 2021; 160: 1075-1084Abstract Full Text Full Text PDF PubMed Scopus (22) Google Scholar developed the ANN model without tumor budding and did not analyze this feature in univariate or multivariate logistic regression. This practice is in contrast with their previous study,5Ichimasa K. et al.Endoscopy. 2018; 50: 230-240Crossref PubMed Scopus (47) Google Scholar in which tumor budding was determined to be one of the most significant risk factor in a machine learning model. The authors claimed that they collected pathologic factors, including depth of invasion and tumor budding according to the Japanese guidelines. However, these factors were not included in ANN model, possibly owing to the low agreement as stated in their Discussion. In their validation analysis, 939 patients were used to compare the accuracy of the ANN model, US guidelines, and Japanese guidelines. The predictive power of US guideline outperformed the Japanese guideline, although the main difference between these two was the inclusion of tumor budding and depth of infiltration in the latter. We are concerned that this result might mislead readers into thinking that tumor budding and submucosal invasion depth were not associated with lymph node metastasis, which was in contrast with most recent research including their previous study.5Ichimasa K. et al.Endoscopy. 2018; 50: 230-240Crossref PubMed Scopus (47) Google Scholar To address this issue, another machine learning model that includes tumor budding and submucosal invasion depth is necessary to clarify the predictive value of these factors for lymph node metastasis. Moreover, external validation was performed in this study, and the outcome defined as pathologic proved lymph node metastasis. However, the external validation results only showed predict accuracy of total patients (n = 939) and initial endoscopic resection (n = 517) in the validation cohort. The predicted outcomes of patients who underwent endoscopy resection alone were not clearly shown. Although these patients did not receive lymph node dissection, long-term local recurrence or survival outcome could be used as an endpoint to assess the total accuracy of AI system. These outcomes may determine whether the AI system could assist in surgical decision-making for the most “appropriate” patients. Overall, the study is very well-conducted. AI technology is promising in clinical healthcare and we look forward to the advent of practical predictive models like ANN to better aid the therapeutic decision-making in patients with colorectal cancer. Artificial Intelligence System to Determine Risk of T1 Colorectal Cancer Metastasis to Lymph NodeGastroenterologyVol. 160Issue 4PreviewIn accordance with guidelines, most patients with T1 colorectal cancers (CRC) undergo surgical resection with lymph node dissection, despite the low incidence (∼10%) of metastasis to lymph nodes. To reduce unnecessary surgical resections, we used artificial intelligence to build a model to identify T1 colorectal tumors at risk for metastasis to lymph node and validated the model in a separate set of patients. Full-Text PDF ReplyGastroenterologyVol. 161Issue 2PreviewWe thank Huang et al for their comments on our article and appreciate the opportunity to discuss the following 2 points1,2: (1) validation of the artificial intelligence (AI) system with the cohort who underwent endoscopic resection of T1 colorectal cancer but received no adjuvant surgery and (2) the development of an AI model which incorporates another 2 pathologic factors, namely, tumor budding and depth of submucosal invasion. Both points are considered clinically relevant and thus we are happy to provide additional data. Full-Text PDF

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
Ava应助细腻的铁身采纳,获得10
1秒前
sugar发布了新的文献求助10
1秒前
哗哗哗发布了新的文献求助10
1秒前
思源应助ctttt采纳,获得10
2秒前
潇洒的灵萱完成签到,获得积分10
2秒前
2秒前
科研通AI6应助虚幻雨筠采纳,获得10
2秒前
珍珠奶茶发布了新的文献求助10
3秒前
3秒前
ywwq完成签到,获得积分20
3秒前
3秒前
nkdailingyun完成签到,获得积分10
4秒前
15完成签到,获得积分10
4秒前
5秒前
健忘的荔枝完成签到,获得积分10
5秒前
Kyrene发布了新的文献求助10
5秒前
小马甲应助xieji采纳,获得10
7秒前
liuyunhao7207完成签到,获得积分10
7秒前
8秒前
9秒前
量子星尘发布了新的文献求助10
9秒前
浮游应助坚定的路人采纳,获得10
9秒前
11秒前
lzy应助Tmac采纳,获得10
11秒前
科研通AI6应助Tmac采纳,获得10
11秒前
隐形曼青应助Tmac采纳,获得10
11秒前
12秒前
bkagyin应助火星上的飞槐采纳,获得10
12秒前
珍珠奶茶完成签到,获得积分10
12秒前
李健应助哈机密南北撸多采纳,获得10
12秒前
隐形曼青应助阿白采纳,获得10
12秒前
13秒前
13秒前
哒丝萌德完成签到,获得积分10
13秒前
13秒前
13秒前
敏感小霸王完成签到 ,获得积分10
13秒前
张子吧完成签到,获得积分20
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5648015
求助须知:如何正确求助?哪些是违规求助? 4774710
关于积分的说明 15042383
捐赠科研通 4807069
什么是DOI,文献DOI怎么找? 2570494
邀请新用户注册赠送积分活动 1527283
关于科研通互助平台的介绍 1486389