Predictive Role of Tumor Budding in T1 Colorectal Cancer Lymph Node Metastasis

医学 斯科普斯 结直肠癌 肿瘤科 转移 瘤芽 淋巴结 淋巴结转移 内科学 癌症 梅德林 政治学 法学
作者
Libin Huang,Tinghan Yang,Hai‐Ning Chen
出处
期刊:Gastroenterology [Elsevier BV]
卷期号:161 (2): 732-733 被引量:6
标识
DOI:10.1053/j.gastro.2020.12.053
摘要

We read with interest the study by Kudo et al,1Kudo S.E. et al.Gastroenterology. 2021; 160: 1075-1084Abstract Full Text Full Text PDF PubMed Scopus (22) Google Scholar in which authors developed an artificial intelligence (AI) system to predict lymph node metastasis in T1 colorectal cancer. It provided a novel AI system that could help to prevent unnecessary extend surgeries. We noticed that the system was developed and validated by separate cohorts according to TRIPOD statement,2Collins G.S. et al.Br J Cancer. 2015; 112: 251-259Crossref PubMed Scopus (46) Google Scholar which would ensure the validity of artificial neural network (ANN) model. However, there are a few concerns that merit further exploration. First, tumor budding was defined as an important risk factor of lymph node metastasis in T1 colorectal cancer in many recent studies and guidelines.3Backes Y. et al.as. Gastroenterology. 2018; 154: 1647-1659Abstract Full Text Full Text PDF PubMed Scopus (29) Google Scholar,4NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines®) (Version 1.2019).www.nccn.org/professionals/physician_gls/f_guidelines.aspDate: 2019Google Scholar In this study, however, Kudo et al1Kudo S.E. et al.Gastroenterology. 2021; 160: 1075-1084Abstract Full Text Full Text PDF PubMed Scopus (22) Google Scholar developed the ANN model without tumor budding and did not analyze this feature in univariate or multivariate logistic regression. This practice is in contrast with their previous study,5Ichimasa K. et al.Endoscopy. 2018; 50: 230-240Crossref PubMed Scopus (47) Google Scholar in which tumor budding was determined to be one of the most significant risk factor in a machine learning model. The authors claimed that they collected pathologic factors, including depth of invasion and tumor budding according to the Japanese guidelines. However, these factors were not included in ANN model, possibly owing to the low agreement as stated in their Discussion. In their validation analysis, 939 patients were used to compare the accuracy of the ANN model, US guidelines, and Japanese guidelines. The predictive power of US guideline outperformed the Japanese guideline, although the main difference between these two was the inclusion of tumor budding and depth of infiltration in the latter. We are concerned that this result might mislead readers into thinking that tumor budding and submucosal invasion depth were not associated with lymph node metastasis, which was in contrast with most recent research including their previous study.5Ichimasa K. et al.Endoscopy. 2018; 50: 230-240Crossref PubMed Scopus (47) Google Scholar To address this issue, another machine learning model that includes tumor budding and submucosal invasion depth is necessary to clarify the predictive value of these factors for lymph node metastasis. Moreover, external validation was performed in this study, and the outcome defined as pathologic proved lymph node metastasis. However, the external validation results only showed predict accuracy of total patients (n = 939) and initial endoscopic resection (n = 517) in the validation cohort. The predicted outcomes of patients who underwent endoscopy resection alone were not clearly shown. Although these patients did not receive lymph node dissection, long-term local recurrence or survival outcome could be used as an endpoint to assess the total accuracy of AI system. These outcomes may determine whether the AI system could assist in surgical decision-making for the most “appropriate” patients. Overall, the study is very well-conducted. AI technology is promising in clinical healthcare and we look forward to the advent of practical predictive models like ANN to better aid the therapeutic decision-making in patients with colorectal cancer. Artificial Intelligence System to Determine Risk of T1 Colorectal Cancer Metastasis to Lymph NodeGastroenterologyVol. 160Issue 4PreviewIn accordance with guidelines, most patients with T1 colorectal cancers (CRC) undergo surgical resection with lymph node dissection, despite the low incidence (∼10%) of metastasis to lymph nodes. To reduce unnecessary surgical resections, we used artificial intelligence to build a model to identify T1 colorectal tumors at risk for metastasis to lymph node and validated the model in a separate set of patients. Full-Text PDF ReplyGastroenterologyVol. 161Issue 2PreviewWe thank Huang et al for their comments on our article and appreciate the opportunity to discuss the following 2 points1,2: (1) validation of the artificial intelligence (AI) system with the cohort who underwent endoscopic resection of T1 colorectal cancer but received no adjuvant surgery and (2) the development of an AI model which incorporates another 2 pathologic factors, namely, tumor budding and depth of submucosal invasion. Both points are considered clinically relevant and thus we are happy to provide additional data. Full-Text PDF
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小超人到海底捉虫完成签到,获得积分10
1秒前
LZL完成签到 ,获得积分10
2秒前
窝窝头完成签到,获得积分10
2秒前
3秒前
薄荷味完成签到 ,获得积分10
4秒前
moxisi完成签到,获得积分10
4秒前
4秒前
7秒前
XieQinxie发布了新的文献求助10
7秒前
zyc1111111应助司空蓝采纳,获得20
9秒前
情怀应助111采纳,获得10
9秒前
美海与鱼完成签到,获得积分10
9秒前
顺顺利利完成签到,获得积分10
9秒前
111完成签到,获得积分10
9秒前
10秒前
典雅葶完成签到 ,获得积分10
10秒前
斯奈克发布了新的文献求助10
10秒前
POWER完成签到,获得积分10
13秒前
11完成签到,获得积分20
13秒前
Hello应助pufanlg采纳,获得10
13秒前
美丽凡阳完成签到,获得积分10
14秒前
科研顺利完成签到,获得积分10
14秒前
撑住完成签到,获得积分10
15秒前
聆琳完成签到 ,获得积分10
15秒前
汤圆完成签到,获得积分10
16秒前
Spiderman完成签到,获得积分10
16秒前
17秒前
丘比特应助znaaaa采纳,获得10
17秒前
FIN应助Shaynin采纳,获得30
17秒前
小圆完成签到,获得积分10
18秒前
ENG完成签到,获得积分10
18秒前
ilaveu完成签到,获得积分10
18秒前
激动的xx完成签到,获得积分10
18秒前
19秒前
liuHX完成签到,获得积分10
19秒前
望望旺仔牛奶完成签到,获得积分10
19秒前
小二郎应助zzzz采纳,获得30
20秒前
ZZ0901完成签到,获得积分10
20秒前
大气建辉完成签到 ,获得积分10
20秒前
yu777完成签到,获得积分10
20秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Atlas of Interventional Pain Management 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4008933
求助须知:如何正确求助?哪些是违规求助? 3548669
关于积分的说明 11299538
捐赠科研通 3283228
什么是DOI,文献DOI怎么找? 1810311
邀请新用户注册赠送积分活动 886034
科研通“疑难数据库(出版商)”最低求助积分说明 811259