过硫酸盐
降级(电信)
化学
动力学
反应速率常数
核化学
光降解
紫外线
有机化学
催化作用
光催化
材料科学
电信
物理
光电子学
量子力学
计算机科学
作者
Qiongfang Wang,Pinhua Rao,Guanghui Li,Lei Dong,Xin Zhang,Yawei Shao,Naiyun Gao,Wenhai Chu,Bin Xu,Na An,Jing Deng
标识
DOI:10.1016/j.ecoenv.2019.109779
摘要
UV-activated persulfate (UV/PS) and peroxymonosulfate (UV/PMS) processes as alternative methods for removal of imidacloprid (IMP) were conducted for the first time. The reaction rate constants between IMP and the sulfate or hydroxyl radical were calculated as 2.33×109 or 2.42×1010 M-1 s-1, respectively. The degradation of IMP was greatly improved by UV/PS and UV/PMS compared with only UV or oxidant. At any given dosage, UV/PS achieved higher IMP removal rate than UV/PMS. The pH range affecting the degradation in the UV/PS and UV/PMS systems were different in the ranges of 6-8 and 9 to 10. SO42-, F- and NO3- had no obvious effect on the degradation in the UV/PS and UV/PMS systems. CO32- and PO43- inhibited the degradation of IMP in the UV/PS system, while they enhanced the degradation in the UV/PMS system. Algae organic matters (AOM) were used to consider the impact of the degradation of IMP for the first time. The removal of IMP were restrained by both AOM and natural organic matters. The higher removal rate of IMP demonstrated that both UV/PS and UV/PMS were suitable for treating the water containing IMP, while UV/PS was cost-effective than UV/PMS based on the total cost calculation. Finally, the degradation pathways of IMP were proposed.
科研通智能强力驱动
Strongly Powered by AbleSci AI