Uncertainty analysis of radar rainfall estimates induced by atmospheric conditions using long short-term memory networks

雷达 环境科学 风速 气象雷达 降水 雨量计 气象学 定量降水预报 计算机科学 地理 电信
作者
Shuliang Zhang,Qiang Dai,Dawei Han,Zhizhou Zhu,Shuliang Zhang
出处
期刊:Journal of Hydrology [Elsevier]
卷期号:590: 125482-125482 被引量:12
标识
DOI:10.1016/j.jhydrol.2020.125482
摘要

The unstable performance of radar rainfall measurement hinders its application in hydrology. Radar rainfall uncertainties induced by atmospheric conditions as raindrops fall from the radar sampling altitude to the ground are critical to radar-based quantitative precipitation estimation. However, these have rarely been considered in previous radar rainfall correction procedures. This study first demonstrates that the correlations between the radar–gauge rainfall discrepancy (RGD) and atmospheric fields are strong. A systematic radar-rainfall adjustment method is then proposed to decrease the discrepancies originating from changes in atmospheric conditions using a long short-term memory (LSTM) network. Three RGD adjustment models were established using a mass-variation scheme, a wind-drift scheme, and a combined mass-variation and wind-drift scheme, based on long-term (2013–2017) data covering most of the United Kingdom. The evaluation results demonstrate that all of the designed models performed well from overall, single-site, and event perspectives. Overall, the combined model, which exhibited the best performance, decreased the root-mean-square error between the rainfall levels measured by radar and gauges by 23.84%, increased Pearson's correlation coefficient from 0.23 to 0.53, and improved the critical success index of the radar rainfall estimation from 0.56 to 0.92. The results indicate that the performances of the proposed models improved with an increase in average relative humidity or wind speed, which demonstrates that they can correct rainfall under high levels of relative humidity and wind speed. This study establishes a highly capable and comprehensive adjustment framework for radar rainfall estimation uncertainty induced by atmospheric conditions, which is essential for achieving high-quality radar products.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
虚拟的秋寒完成签到,获得积分10
刚刚
独特的高山完成签到 ,获得积分10
1秒前
2秒前
3秒前
4秒前
6秒前
baocq发布了新的文献求助10
8秒前
Hathaway完成签到,获得积分10
10秒前
sunny发布了新的文献求助10
11秒前
劲秉应助小白采纳,获得10
13秒前
14秒前
HaojunWang完成签到 ,获得积分10
15秒前
小董完成签到,获得积分10
16秒前
19秒前
orixero应助jiyuan采纳,获得10
20秒前
杳鸢应助我爱小白贺采纳,获得20
21秒前
Zurlliant完成签到,获得积分10
21秒前
21秒前
XY完成签到,获得积分10
23秒前
古月完成签到,获得积分10
25秒前
蝶步韶华完成签到,获得积分10
33秒前
丘比特应助半山采纳,获得10
34秒前
34秒前
不舍天真完成签到,获得积分10
34秒前
小易同学完成签到,获得积分10
34秒前
35秒前
chen完成签到,获得积分20
36秒前
彭于晏应助送玉米的小二采纳,获得30
36秒前
就这完成签到,获得积分10
38秒前
39秒前
jiyuan发布了新的文献求助10
40秒前
小爽完成签到 ,获得积分10
40秒前
小蘑菇应助chen采纳,获得10
42秒前
43秒前
44秒前
yjCHEN完成签到,获得积分10
45秒前
半枳黄括发布了新的文献求助10
47秒前
香蕉觅云应助科研达人采纳,获得10
48秒前
春秋发布了新的文献求助10
51秒前
上官若男应助jiyuan采纳,获得10
51秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
지식생태학: 생태학, 죽은 지식을 깨우다 600
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3461213
求助须知:如何正确求助?哪些是违规求助? 3054925
关于积分的说明 9045546
捐赠科研通 2744821
什么是DOI,文献DOI怎么找? 1505702
科研通“疑难数据库(出版商)”最低求助积分说明 695786
邀请新用户注册赠送积分活动 695205