Uncertainty analysis of radar rainfall estimates induced by atmospheric conditions using long short-term memory networks

雷达 环境科学 风速 气象雷达 降水 雨量计 气象学 定量降水预报 计算机科学 地理 电信
作者
Shuliang Zhang,Qiang Dai,Dawei Han,Zhizhou Zhu,Shuliang Zhang
出处
期刊:Journal of Hydrology [Elsevier BV]
卷期号:590: 125482-125482 被引量:12
标识
DOI:10.1016/j.jhydrol.2020.125482
摘要

The unstable performance of radar rainfall measurement hinders its application in hydrology. Radar rainfall uncertainties induced by atmospheric conditions as raindrops fall from the radar sampling altitude to the ground are critical to radar-based quantitative precipitation estimation. However, these have rarely been considered in previous radar rainfall correction procedures. This study first demonstrates that the correlations between the radar–gauge rainfall discrepancy (RGD) and atmospheric fields are strong. A systematic radar-rainfall adjustment method is then proposed to decrease the discrepancies originating from changes in atmospheric conditions using a long short-term memory (LSTM) network. Three RGD adjustment models were established using a mass-variation scheme, a wind-drift scheme, and a combined mass-variation and wind-drift scheme, based on long-term (2013–2017) data covering most of the United Kingdom. The evaluation results demonstrate that all of the designed models performed well from overall, single-site, and event perspectives. Overall, the combined model, which exhibited the best performance, decreased the root-mean-square error between the rainfall levels measured by radar and gauges by 23.84%, increased Pearson's correlation coefficient from 0.23 to 0.53, and improved the critical success index of the radar rainfall estimation from 0.56 to 0.92. The results indicate that the performances of the proposed models improved with an increase in average relative humidity or wind speed, which demonstrates that they can correct rainfall under high levels of relative humidity and wind speed. This study establishes a highly capable and comprehensive adjustment framework for radar rainfall estimation uncertainty induced by atmospheric conditions, which is essential for achieving high-quality radar products.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Gyro发布了新的文献求助20
刚刚
刚刚
个性的汲发布了新的文献求助10
刚刚
2秒前
2秒前
Jasper应助tttp采纳,获得10
4秒前
Duojie发布了新的文献求助10
4秒前
7秒前
cc发布了新的文献求助10
7秒前
Litoivda完成签到 ,获得积分10
7秒前
8秒前
9秒前
10秒前
阳光BOY发布了新的文献求助10
12秒前
13秒前
15秒前
15秒前
呆呆完成签到,获得积分10
15秒前
璨澄发布了新的文献求助10
15秒前
17秒前
英姑应助个性的汲采纳,获得10
17秒前
JamesPei应助无敌小汐采纳,获得10
18秒前
FashionBoy应助无敌小汐采纳,获得10
18秒前
Litoivda发布了新的文献求助20
19秒前
激动的萧发布了新的文献求助10
20秒前
22秒前
甜甜凉面发布了新的文献求助10
22秒前
SciGPT应助556677y采纳,获得30
23秒前
能干冬瓜完成签到,获得积分10
24秒前
慕青应助激动的萧采纳,获得10
25秒前
追梦完成签到,获得积分10
27秒前
27秒前
29秒前
pengchengxi完成签到,获得积分20
29秒前
HYT完成签到,获得积分10
30秒前
小青完成签到,获得积分10
31秒前
Orange应助能干冬瓜采纳,获得10
31秒前
充电宝应助拼搏篮球采纳,获得10
32秒前
33秒前
HYT发布了新的文献求助10
33秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962236
求助须知:如何正确求助?哪些是违规求助? 3508458
关于积分的说明 11140902
捐赠科研通 3241109
什么是DOI,文献DOI怎么找? 1791341
邀请新用户注册赠送积分活动 872825
科研通“疑难数据库(出版商)”最低求助积分说明 803382