Deep learning models for cuffless blood pressure monitoring from PPG signals using attention mechanism

光容积图 血压 计算机科学 人工智能 人工神经网络 医疗器械 支持向量机 医学 降维 机器学习 模式识别(心理学) 心脏病学 内科学 滤波器(信号处理) 计算机视觉
作者
Chadi El-Hajj,P. A. Kyriacou
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:65: 102301-102301 被引量:106
标识
DOI:10.1016/j.bspc.2020.102301
摘要

Hypertension or high blood pressure is a major health problem worldwide and primary risk factor for cardiovascular disease. Blood pressure is one of the four vital signs that provides important information regarding patients’ cardiovascular system conditions. Continuous and regular blood pressure monitoring is essential for early diagnosis and prevention of cardiovascular disease. Considering the existing invasive or cuff-based blood pressuring monitoring techniques in clinical practice, several studies have identified motivation and advantages of a new non-invasive and cuffless blood pressuring measurement technique using Photoplethysmogram (PPG) signals. In this study, we propose several systolic and diastolic blood pressure estimation models using recurrent neural networks with bidirectional connections and attention mechanism utilising only PPG signals. The models were evaluated on PPG and blood pressure signals derived from the Multiparameter Intelligent Monitoring in Intensive Care II database. In the process, 22 characteristic features were extracted from the PPG waveform followed by various dimensionality reduction techniques to eliminate redundancies and reduce computational complexity. The proposed models were evaluated on both the 22-feature set and the reduced input feature vector, respectively. The models were compared with four machine learning techniques commonly used in the literature. Experimental results demonstrated that the proposed models could capture the non-linear relationship between the PPG features and blood pressure with high accuracy and outperformed the conventional machine learning methods on both datasets. The results for all the proposed models were acceptable by the global standards set by the Association for the Advancement of Medical Instrumentation for cuffless blood pressure estimation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
圆圆发布了新的文献求助10
1秒前
四夕完成签到,获得积分10
1秒前
1秒前
冰叶点点发布了新的文献求助10
2秒前
吃鸡蛋不吃鸡蛋黄完成签到,获得积分10
3秒前
宓不评发布了新的文献求助10
3秒前
lijing完成签到,获得积分20
3秒前
3秒前
4秒前
丘比特应助林深时见鹿采纳,获得10
4秒前
九秋完成签到 ,获得积分10
5秒前
领导范儿应助来日方长采纳,获得10
5秒前
5秒前
6秒前
6秒前
tim完成签到,获得积分10
6秒前
小伙子发布了新的文献求助10
7秒前
7秒前
无知小白完成签到 ,获得积分10
7秒前
8秒前
Di完成签到 ,获得积分10
8秒前
8秒前
li完成签到,获得积分20
8秒前
mmm完成签到,获得积分10
8秒前
欣喜的秋灵应助Megumi采纳,获得10
9秒前
欢喜的樱桃完成签到,获得积分10
9秒前
syt完成签到 ,获得积分10
9秒前
10秒前
10秒前
穆小菜发布了新的文献求助10
11秒前
12秒前
Connie发布了新的文献求助10
12秒前
雪白问兰应助li采纳,获得10
12秒前
12秒前
jyszh1001发布了新的文献求助10
13秒前
14秒前
苏洋关注了科研通微信公众号
14秒前
14秒前
合一海盗完成签到,获得积分10
15秒前
桐桐应助丁丁采纳,获得10
15秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3156728
求助须知:如何正确求助?哪些是违规求助? 2808129
关于积分的说明 7876351
捐赠科研通 2466523
什么是DOI,文献DOI怎么找? 1312903
科研通“疑难数据库(出版商)”最低求助积分说明 630304
版权声明 601919