材料科学
聚氨酯
植入
硅酮
生物医学工程
聚乙烯
多孔性
聚乙烯醇
复合材料
外科
医学
作者
W. Kenneth Ward,Emily P Slobodzian,Kenneth L. Tiekotter,Michael D. Wood
出处
期刊:Biomaterials
[Elsevier]
日期:2002-09-17
卷期号:23 (21): 4185-4192
被引量:166
标识
DOI:10.1016/s0142-9612(02)00160-6
摘要
We addressed the effect of implant thickness, implant porosity, and polyurethane (PU) chemistry on angiogenesis and on the foreign body response in rats. The following materials were implanted subcutaneously for 7 weeks then excised for histologic analysis: a solid PU; a solid polyurethane with silicone and polyethylene oxide (PU-S-PEO); porous expanded polytetrafluoroethylene (ePTFE); and porous polyvinyl alcohol sponge (PVA). Two thicknesses of PU-S-PEO were compared: 300 μm (thin) and 2000 μm (thick). Foreign body capsule (FBC) thickness was much less in PU-S-PEO implants than in PU implants. In addition, FBC were thinner in thin implants than in thick implants. FBC was much more dense in solid implants than in porous implants. As compared with solid implants, porous implants (PVA and ePTFE) led to a marked increase in the number of microvessels that developed adjacent to the implant, as observed both with hematoxylin/eosin staining and with an immunohistochemical anti-endothelial stain. We conclude that the polyethylene oxide and silicone moieties in PU reduce the thickness of the subsequent FBC. In addition, thin implants lead to a thin FBC. Porous implants (PVA and ePTFE) cause more angiogenesis than solid implants. These results may have implications for the measurement of blood-derived analytes by biosensors.
科研通智能强力驱动
Strongly Powered by AbleSci AI