Predictive-model-based dynamic coordination control strategy for power-split hybrid electric bus

模型预测控制 控制理论(社会学) 扭矩 控制工程 工程类 观察员(物理) 计算机科学 功率(物理) 过程(计算) 能源管理 控制(管理) 汽车工程 能量(信号处理) 人工智能 物理 量子力学 热力学 操作系统 统计 数学
作者
Xiaohua Zeng,Nannan Yang,Junnian Wang,Dafeng Song,Nong Zhang,Mingli Shang,Jianxin Liu
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:60-61: 785-798 被引量:62
标识
DOI:10.1016/j.ymssp.2014.12.016
摘要

Parameter-matching methods and optimal control strategies of the top-selling hybrid electric vehicle (HEV), namely, power-split HEV, are widely studied. In particular, extant research on control strategy focuses on the steady-state energy management strategy to obtain better fuel economy. However, given that multi-power sources are highly coupled in power-split HEVs and influence one another during mode shifting, conducting research on dynamic coordination control strategy (DCCS) to achieve riding comfort is also important. This paper proposes a predictive-model-based DCCS. First, the dynamic model of the objective power-split HEV is built and the mode shifting process is analyzed based on the developed model to determine the reason for the system shock generated. Engine torque estimation algorithm is then designed according to the principle of the nonlinear observer, and the prediction model of the degree of shock is established based on the theory of model predictive control. Finally, the DCCS with adaptation for a complex driving cycle is realized by combining the feedback control and the predictive model. The presented DCCS is validated on the co-simulation platform of AMESim and Simulink. Results show that the shock during mode shifting is well controlled, thereby improving riding comfort.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
别说话完成签到,获得积分10
刚刚
刚刚
1秒前
az发布了新的文献求助10
1秒前
caicifeng发布了新的文献求助10
1秒前
1秒前
1秒前
chemier027完成签到,获得积分10
3秒前
4秒前
别说话发布了新的文献求助10
5秒前
完美世界应助caicifeng采纳,获得10
5秒前
5秒前
7秒前
ZHONK1NG发布了新的文献求助10
8秒前
蚂蚱完成签到 ,获得积分0
9秒前
李爱国应助来轩采纳,获得10
9秒前
端庄书雁发布了新的文献求助10
10秒前
柯不正发布了新的文献求助10
10秒前
11秒前
13秒前
osmanthus完成签到,获得积分10
13秒前
咻咻应助科研通管家采纳,获得20
14秒前
mhl11应助科研通管家采纳,获得10
14秒前
上官若男应助科研通管家采纳,获得10
14秒前
蔡宏达应助科研通管家采纳,获得10
14秒前
隐形曼青应助科研通管家采纳,获得10
14秒前
mhl11应助科研通管家采纳,获得10
14秒前
我是老大应助科研通管家采纳,获得10
14秒前
蔡宏达应助科研通管家采纳,获得10
15秒前
彭于彦祖应助科研通管家采纳,获得40
15秒前
搜集达人应助科研通管家采纳,获得10
15秒前
Orange应助科研通管家采纳,获得10
15秒前
15秒前
15秒前
笨笨石头应助科研通管家采纳,获得10
15秒前
领导范儿应助科研通管家采纳,获得10
15秒前
Hello应助科研通管家采纳,获得50
15秒前
科研通AI2S应助科研通管家采纳,获得10
15秒前
脑洞疼应助科研通管家采纳,获得30
15秒前
笨笨石头应助科研通管家采纳,获得10
16秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 930
The Healthy Socialist Life in Maoist China 600
The Vladimirov Diaries [by Peter Vladimirov] 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3266021
求助须知:如何正确求助?哪些是违规求助? 2905843
关于积分的说明 8335622
捐赠科研通 2576229
什么是DOI,文献DOI怎么找? 1400372
科研通“疑难数据库(出版商)”最低求助积分说明 654757
邀请新用户注册赠送积分活动 633563