食草动物
泰加语
生物
抗性(生态学)
生态学
营养物
少年
人口
限制
机械工程
人口学
社会学
工程类
作者
John P. Bryant,F. Stuart Chapin,David R. Klein
出处
期刊:Oikos
[Wiley]
日期:1983-05-01
卷期号:40 (3): 357-357
被引量:2355
摘要
The evolutionary response of plants to herbivory is constrained by the availability of resources in the environment. Woody plants adapted to low-resource environments have intrinsically slow growth rates that limit their capacity to grow rapidly beyond the reach of most browsing mammals. Their low capacity to acquire resources limits their potential for compensatory growth which would otherwise enable them to replace tissue destroyed by browsing. Plants adapted to low-resource environments have responded to browsing by evolving strong constitutive defenses with relatively low ontogenetic plasticity. Because nutrients are often more limiting than light in boreal forests, slowly growing boreal forest trees utilize carbon-based rather than nitrogen-based defenses. More rapidly growing shade-intolerant trees that are adapted to growth in high-resource environments are selected for competitive ability and can grow rapidly beyond the range of most browsing mammals. Moreover, these plants have the carbon and nutrient reserves necessary to replace tissue lost to browsing through compensatory growth. However, because browsing of juvenile plants reduces vertical growth and thus competitive ability, these plants are selected for resistance to browsing during the juvenile growth phase. Consequently, early successional boreal forest trees have responded to browsing by evolving strong defenses during juvenility only. Because severe pruning causes woody plants to revert to a juvenile form, resistance of woody plants to hares increases after severe hare browsing as occurs during hare population outbreaks. This increase in browsing resistance may play a significant role in boreal forest plant-hare interactions. Unlike woody plants, graminoids retain large reserves of carbon and nutrients below ground in both low-resource and high-resource environments and can respond to severe grazing through compensatory growth. These fundamental differences between the response of woody plants and graminoids to vertebrate herbivory suggest that the dynamics of browsing systems and grazing systems are qualitatively different.
科研通智能强力驱动
Strongly Powered by AbleSci AI