Abstract Recent advances in molecular organic photovoltaics (OPVs) have shown 10% power conversion efficiency (PCE) for single‐junction cells, which put them in direct competition with PVs based on amorphous silicon. Incorporation of plasmonic nanostructures for light trapping in these thin‐film devices offers an attractive solution to realize higher‐efficiency OPVs with PCE≫10%. This article reviews recent progress on plasmonic‐enhanced OPV devices using metallic nanoparticles, and one‐dimensional (1D) and two‐dimensional (2D) patterned periodic nanostructures. We discuss the benefits of using various plasmonic nanostructures for broad‐band, polarization‐insensitive and angle‐independent absorption enhancement, and their integration with one or two electrode(s) of an OPV device.