Automated Detection of Lunar Rockfalls Using a Convolutional Neural Network

计算机科学 落石 卷积神经网络 人工智能 轨道飞行器 过度拟合 目标检测 数据集 探测器 计算机视觉 模式识别(心理学) 遥感 人工神经网络 地质学 山崩 电信 岩土工程 航空航天工程 工程类
作者
Valentin Bickel,Charis Lanaras,Andrea Manconi,Simon Loew,U. Mall
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:57 (6): 3501-3511 被引量:30
标识
DOI:10.1109/tgrs.2018.2885280
摘要

This paper implements a novel approach to automatically detect and classify rockfalls in Lunar Reconnaissance Orbiter narrow angle camera (NAC) images using a single-stage dense object detector (RetinaNet). The convolutional neural network has been trained with a data set of 2932 original rockfall images. In order to avoid overfitting, the initial training data set has been augmented during training using random image rotation, scaling, and flipping. Testing images have been labelled by human operators and have been used for RetinaNet performance evaluation. Testing shows that RetinaNet is capable to reach recall values between 0.98 and 0.39, precision values between 1 and 0.25, and average precisions ranging from 0.89 to 0.69, depending on the used confidence threshold and intersection-over-union values. Mean processing time of a single NAC image in RetinaNet is around 10 s using a GeForce GTX 1080 Ti and GeForce Titan Xp, which is in orders of magnitudes faster than a human operator. The processing speed allows to efficiently exploit the currently available NAC data stack with more than 1 million images in a reasonable timeframe. The combination of speed and detection performance can be used to produce lunar rockfall distribution maps on large spatial scales for utilization by the scientific and engineering community.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
诚心的念文完成签到,获得积分10
刚刚
神秘的刘安实完成签到 ,获得积分10
1秒前
VVZD发布了新的文献求助10
1秒前
2秒前
orixero应助七七采纳,获得10
3秒前
Hilda007发布了新的文献求助10
3秒前
在水一方应助罗拉采纳,获得10
4秒前
2muchlike关注了科研通微信公众号
5秒前
科研通AI6应助心信鑫采纳,获得30
5秒前
浮游应助热心的荣轩采纳,获得10
6秒前
6秒前
哟哟哟完成签到,获得积分10
6秒前
cruise发布了新的文献求助10
7秒前
franzzz发布了新的文献求助10
7秒前
华123完成签到,获得积分20
8秒前
xunmacaoyan完成签到,获得积分10
8秒前
9秒前
举个西瓜完成签到,获得积分10
9秒前
10秒前
10秒前
11秒前
LinHan发布了新的文献求助10
11秒前
秋风来临之时完成签到 ,获得积分10
12秒前
12秒前
Hello应助Rui采纳,获得100
12秒前
小木子发布了新的文献求助10
13秒前
13秒前
13秒前
SciGPT应助xibei采纳,获得10
13秒前
14秒前
小二郎应助科研通管家采纳,获得20
14秒前
xubobo发布了新的文献求助10
14秒前
星辰大海应助科研通管家采纳,获得10
14秒前
顾矜应助科研通管家采纳,获得10
14秒前
大模型应助科研通管家采纳,获得10
14秒前
FashionBoy应助科研通管家采纳,获得10
14秒前
Orange应助科研通管家采纳,获得10
14秒前
领导范儿应助科研通管家采纳,获得50
15秒前
qingmoheng应助科研通管家采纳,获得10
15秒前
NGU发布了新的文献求助10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
The Antibodies, Vol. 2,3,4,5,6 1000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5461185
求助须知:如何正确求助?哪些是违规求助? 4566221
关于积分的说明 14304031
捐赠科研通 4491948
什么是DOI,文献DOI怎么找? 2460543
邀请新用户注册赠送积分活动 1449837
关于科研通互助平台的介绍 1425582