急诊科
弹性(材料科学)
离散事件仿真
医疗急救
急诊分诊台
自然灾害
事件(粒子物理)
计算机科学
医学
模拟
地理
物理
量子力学
精神科
热力学
气象学
作者
Gian Paolo Cimellaro,Marzia Malavisi,Stephen A. Mahin
标识
DOI:10.1080/13632469.2016.1172373
摘要
Hospitals are critical infrastructures which are vulnerable to natural disasters, such as earthquakes, man-made disasters and mass causalities events. During the emergency, the hospital might also incur in structural and non-structural damage, have limited communication and resources, so they might not be able to treat the large number of incoming patients. For this reason, the majority of medium- and large-size hospitals have an emergency plan that expands their services quickly beyond normal operating conditions to meet an increased demand for medical care, but it is impossible for them to test it before an emergency occurs. The objective of this article is to develop a simplified model that could describe the ability of the Hospital Emergency Department to provide service to all patients after a natural disaster or any other emergency. The waiting time is the main response parameter used to measure hospital resilience to disasters. The analytical model has been built using the following steps. First, a discrete event simulation model of the Emergency Department in a hospital located in Italy is developed taking into account the hospital resources, the emergency rooms, the circulation patterns and the patient codes. The results of the Monte Carlo simulations show that the waiting time for yellow codes, when the emergency plan is applied, are reduced by 96%, while for green codes by 75%. Then, using the results obtained from the simulations, a general metamodel has been developed, which provides the waiting times of patients as function of the seismic input and the number of the available emergency rooms. The proposed metamodel is general and it can be applied to any type of hospital.
科研通智能强力驱动
Strongly Powered by AbleSci AI