Using Discrete Event Simulation Models to Evaluate Resilience of an Emergency Department

急诊科 弹性(材料科学) 离散事件仿真 医疗急救 急诊分诊台 自然灾害 事件(粒子物理) 计算机科学 医学 模拟 地理 物理 量子力学 精神科 热力学 气象学
作者
Gian Paolo Cimellaro,Marzia Malavisi,Stephen A. Mahin
出处
期刊:Journal of Earthquake Engineering [Taylor & Francis]
卷期号:21 (2): 203-226 被引量:64
标识
DOI:10.1080/13632469.2016.1172373
摘要

Hospitals are critical infrastructures which are vulnerable to natural disasters, such as earthquakes, man-made disasters and mass causalities events. During the emergency, the hospital might also incur in structural and non-structural damage, have limited communication and resources, so they might not be able to treat the large number of incoming patients. For this reason, the majority of medium- and large-size hospitals have an emergency plan that expands their services quickly beyond normal operating conditions to meet an increased demand for medical care, but it is impossible for them to test it before an emergency occurs. The objective of this article is to develop a simplified model that could describe the ability of the Hospital Emergency Department to provide service to all patients after a natural disaster or any other emergency. The waiting time is the main response parameter used to measure hospital resilience to disasters. The analytical model has been built using the following steps. First, a discrete event simulation model of the Emergency Department in a hospital located in Italy is developed taking into account the hospital resources, the emergency rooms, the circulation patterns and the patient codes. The results of the Monte Carlo simulations show that the waiting time for yellow codes, when the emergency plan is applied, are reduced by 96%, while for green codes by 75%. Then, using the results obtained from the simulations, a general metamodel has been developed, which provides the waiting times of patients as function of the seismic input and the number of the available emergency rooms. The proposed metamodel is general and it can be applied to any type of hospital.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yule完成签到,获得积分10
刚刚
1秒前
benbenx发布了新的文献求助10
1秒前
1秒前
ll完成签到 ,获得积分10
1秒前
思思发布了新的文献求助10
1秒前
心灵美的幼蓉完成签到,获得积分10
2秒前
2秒前
hahhhah完成签到 ,获得积分10
2秒前
2秒前
葡萄成熟时完成签到 ,获得积分10
2秒前
3秒前
Code_king完成签到,获得积分10
3秒前
4秒前
Gouki完成签到 ,获得积分10
4秒前
晓驿发布了新的文献求助100
4秒前
5秒前
chizhi完成签到,获得积分10
6秒前
jjc发布了新的文献求助10
6秒前
CodeCraft应助PhDL1采纳,获得10
6秒前
lyp7028完成签到,获得积分10
6秒前
王孝松发布了新的文献求助10
7秒前
陈昭琼发布了新的文献求助10
7秒前
研友_VZG64n完成签到,获得积分10
7秒前
LIUY发布了新的文献求助10
7秒前
enen发布了新的文献求助10
8秒前
8秒前
8秒前
清韵微风完成签到,获得积分10
8秒前
雨晴发布了新的文献求助10
9秒前
Jasper应助uu白采纳,获得10
10秒前
10秒前
化身孤岛的鲸完成签到 ,获得积分10
10秒前
Duha完成签到,获得积分10
11秒前
11秒前
11秒前
上上签完成签到,获得积分10
11秒前
醉熏的雁完成签到 ,获得积分10
12秒前
情怀应助Gao采纳,获得10
12秒前
NanNan626发布了新的文献求助10
12秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Hydrothermal Circulation and Seawater Chemistry: Links and Feedbacks 1200
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Oxford Learner's Pocket Word Skills 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5151604
求助须知:如何正确求助?哪些是违规求助? 4347231
关于积分的说明 13536167
捐赠科研通 4189937
什么是DOI,文献DOI怎么找? 2297805
邀请新用户注册赠送积分活动 1298127
关于科研通互助平台的介绍 1242778