先验与后验
计算机科学
约束(计算机辅助设计)
代表(政治)
国家(计算机科学)
估计
数据挖掘
理论计算机科学
人工智能
算法
数学
工程类
政治
几何学
认识论
哲学
法学
系统工程
政治学
作者
Randall K. Smith,Matthew W. Self,Peter Cheeseman
出处
期刊:International Symposium on Robotics
日期:1988-05-01
卷期号:: 467-474
被引量:424
摘要
In this paper we will describe a representation for spatial relationships which makes explicit their inherent uncertainty. We will show ways to manipulate them to obtain estimates of relationships and associated uncertainties not explicitly given, and show how decisions to sense or act can be made a priori based on those estimates. We will show how new constraint information, usually obtained by measurement, can be used to update the world model of relationships consistently, and in some situations, optimally. The framework we describe relies only on well-known state estimation methods.
科研通智能强力驱动
Strongly Powered by AbleSci AI