A general framework for calibrating and comparing car-following models

贝叶斯概率 集合(抽象数据类型) 校准 计算机科学 贝叶斯推理 度量(数据仓库) 数据集 人口 数学模型 机器学习 人工智能 计量经济学 数据挖掘 数学 统计 社会学 人口学 程序设计语言
作者
C.P.I.J. van Hinsbergen,Wouter Schakel,Victor L. Knoop,Hans van Lint,Serge P. Hoogendoorn
出处
期刊:Transportmetrica [Informa]
卷期号:11 (5): 420-440 被引量:24
标识
DOI:10.1080/23249935.2015.1006157
摘要

Recent research has shown that there exists large heterogeneity in car-following behaviour such that different car-following models best describe different drivers' behaviour. A literature review reveals that current approaches to calibrate and compare different models for one driver do not take the complexity of the models into account or are only able to compare a specific set of models. This contribution applies Bayesian techniques to the calibration of car-following models. The Bayesian framework promotes models that fit the data well but punishes models with a high complexity, resulting in a measure called the evidence. This evidence quantifies how probable each model is to be the model that best describes the car-following behaviour of a single driver. It can be computed for any car-following model. When considered over multiple drivers, the evidences can be used to describe the heterogeneity of the driving population. In an experiment seven different car-following models are calibrated and compared using a data set that was collected with a helicopter. The results indicate that multi-leader models better describe the car-following models even if their higher complexity is accounted for, and that for the description of microscopic driving behaviour the reaction time is essential; models without a reaction time perform significantly worse.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Laurelxue完成签到 ,获得积分10
刚刚
优秀的幻波完成签到,获得积分10
1秒前
zxj发布了新的文献求助30
1秒前
研友_LBoEqn完成签到,获得积分10
2秒前
yue957发布了新的文献求助10
2秒前
53发布了新的文献求助10
2秒前
3秒前
clp发布了新的文献求助10
3秒前
小会发布了新的文献求助30
4秒前
清秀灵薇完成签到,获得积分10
4秒前
丰富猕猴桃完成签到,获得积分10
5秒前
5秒前
5秒前
泡泡完成签到 ,获得积分10
5秒前
5秒前
6秒前
JamesPei应助7890733采纳,获得10
6秒前
jy完成签到,获得积分10
6秒前
Simoni完成签到,获得积分10
7秒前
Walter发布了新的文献求助10
7秒前
SUPERH0T发布了新的文献求助10
7秒前
7秒前
巴图鲁完成签到,获得积分10
7秒前
kimoki完成签到 ,获得积分10
7秒前
8秒前
8秒前
hht完成签到,获得积分10
8秒前
万能图书馆应助清秀的芾采纳,获得10
8秒前
9秒前
9秒前
xia完成签到,获得积分10
9秒前
Ava应助Everglow采纳,获得10
9秒前
Begonia发布了新的文献求助10
9秒前
科研通AI6应助路纹婷采纳,获得10
10秒前
10秒前
10秒前
阳阳发布了新的文献求助10
11秒前
11秒前
11秒前
Hello应助淡定的不言采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Limits of Participatory Action Research: When Does Participatory “Action” Alliance Become Problematic, and How Can You Tell? 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5545721
求助须知:如何正确求助?哪些是违规求助? 4631761
关于积分的说明 14622099
捐赠科研通 4573427
什么是DOI,文献DOI怎么找? 2507524
邀请新用户注册赠送积分活动 1484223
关于科研通互助平台的介绍 1455530