A general framework for calibrating and comparing car-following models

贝叶斯概率 集合(抽象数据类型) 校准 计算机科学 贝叶斯推理 度量(数据仓库) 数据集 人口 数学模型 机器学习 人工智能 计量经济学 数据挖掘 数学 统计 社会学 人口学 程序设计语言
作者
C.P.I.J. van Hinsbergen,Wouter Schakel,Victor L. Knoop,Hans van Lint,Serge P. Hoogendoorn
出处
期刊:Transportmetrica [Informa]
卷期号:11 (5): 420-440 被引量:24
标识
DOI:10.1080/23249935.2015.1006157
摘要

Recent research has shown that there exists large heterogeneity in car-following behaviour such that different car-following models best describe different drivers' behaviour. A literature review reveals that current approaches to calibrate and compare different models for one driver do not take the complexity of the models into account or are only able to compare a specific set of models. This contribution applies Bayesian techniques to the calibration of car-following models. The Bayesian framework promotes models that fit the data well but punishes models with a high complexity, resulting in a measure called the evidence. This evidence quantifies how probable each model is to be the model that best describes the car-following behaviour of a single driver. It can be computed for any car-following model. When considered over multiple drivers, the evidences can be used to describe the heterogeneity of the driving population. In an experiment seven different car-following models are calibrated and compared using a data set that was collected with a helicopter. The results indicate that multi-leader models better describe the car-following models even if their higher complexity is accounted for, and that for the description of microscopic driving behaviour the reaction time is essential; models without a reaction time perform significantly worse.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
善学以致用应助喵喵采纳,获得10
1秒前
小马甲应助喵喵采纳,获得10
1秒前
酷波er应助喵喵采纳,获得10
1秒前
科研通AI6应助喵喵采纳,获得10
1秒前
汉堡包应助喵喵采纳,获得50
1秒前
科研通AI6应助喵喵采纳,获得10
1秒前
脑洞疼应助喵喵采纳,获得50
1秒前
华仔应助喵喵采纳,获得10
2秒前
Ava应助喵喵采纳,获得50
2秒前
希望天下0贩的0应助喵喵采纳,获得10
2秒前
youyuanDeng发布了新的文献求助10
2秒前
科研通AI2S应助合适苗条采纳,获得10
2秒前
3秒前
BareBear应助任性的水风采纳,获得10
3秒前
KKKkkkkk发布了新的文献求助10
4秒前
4秒前
我会发文章的完成签到,获得积分10
4秒前
天天快乐应助X519664508采纳,获得30
5秒前
zyyicu完成签到,获得积分10
5秒前
5秒前
5秒前
陈承一发布了新的文献求助10
5秒前
风风完成签到 ,获得积分10
7秒前
shidewu完成签到,获得积分10
7秒前
田様应助独角兽先生采纳,获得10
8秒前
8秒前
9秒前
Yultuz友发布了新的文献求助10
9秒前
HP完成签到,获得积分10
9秒前
10秒前
10秒前
英姑应助科研通管家采纳,获得10
10秒前
香蕉诗蕊应助科研通管家采纳,获得10
10秒前
慕青应助科研通管家采纳,获得10
10秒前
youyuanDeng完成签到,获得积分10
10秒前
李爱国应助Huguizhou采纳,获得10
10秒前
Orange应助科研通管家采纳,获得10
10秒前
深情安青应助科研通管家采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Biotechnology Engineering 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5630027
求助须知:如何正确求助?哪些是违规求助? 4721552
关于积分的说明 14972362
捐赠科研通 4788123
什么是DOI,文献DOI怎么找? 2556791
邀请新用户注册赠送积分活动 1517752
关于科研通互助平台的介绍 1478367