A general framework for calibrating and comparing car-following models

贝叶斯概率 集合(抽象数据类型) 校准 计算机科学 贝叶斯推理 度量(数据仓库) 数据集 人口 数学模型 机器学习 人工智能 计量经济学 数据挖掘 数学 统计 社会学 人口学 程序设计语言
作者
C.P.I.J. van Hinsbergen,Wouter Schakel,Victor L. Knoop,Hans van Lint,Serge P. Hoogendoorn
出处
期刊:Transportmetrica [Taylor & Francis]
卷期号:11 (5): 420-440 被引量:24
标识
DOI:10.1080/23249935.2015.1006157
摘要

Recent research has shown that there exists large heterogeneity in car-following behaviour such that different car-following models best describe different drivers' behaviour. A literature review reveals that current approaches to calibrate and compare different models for one driver do not take the complexity of the models into account or are only able to compare a specific set of models. This contribution applies Bayesian techniques to the calibration of car-following models. The Bayesian framework promotes models that fit the data well but punishes models with a high complexity, resulting in a measure called the evidence. This evidence quantifies how probable each model is to be the model that best describes the car-following behaviour of a single driver. It can be computed for any car-following model. When considered over multiple drivers, the evidences can be used to describe the heterogeneity of the driving population. In an experiment seven different car-following models are calibrated and compared using a data set that was collected with a helicopter. The results indicate that multi-leader models better describe the car-following models even if their higher complexity is accounted for, and that for the description of microscopic driving behaviour the reaction time is essential; models without a reaction time perform significantly worse.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
眼睛大的小天鹅完成签到,获得积分10
刚刚
2秒前
2秒前
Rondab应助海的呼唤采纳,获得10
2秒前
asdf完成签到,获得积分10
3秒前
ll发布了新的文献求助30
3秒前
顾右发布了新的文献求助10
4秒前
longyuzhu完成签到,获得积分20
5秒前
无花果应助思维隋采纳,获得10
5秒前
5秒前
灵犀完成签到,获得积分10
6秒前
6秒前
7秒前
longyuzhu发布了新的文献求助10
8秒前
丘比特应助单薄的如之采纳,获得10
8秒前
田様应助愤怒的稀采纳,获得10
9秒前
asdf发布了新的文献求助10
9秒前
科研牛马完成签到,获得积分20
11秒前
12秒前
12秒前
12秒前
柠m发布了新的文献求助10
12秒前
淡定的老头完成签到,获得积分10
13秒前
小刘有个大梦想完成签到 ,获得积分10
14秒前
16秒前
科研牛马发布了新的文献求助10
17秒前
18秒前
19秒前
dalian完成签到,获得积分10
19秒前
19秒前
温柔以冬发布了新的文献求助10
19秒前
szzz完成签到,获得积分10
21秒前
英俊的铭应助王星星采纳,获得10
21秒前
zzznznnn发布了新的文献求助10
22秒前
旋转鸡爪子应助大青山采纳,获得10
22秒前
23秒前
科研达人发布了新的文献求助10
23秒前
思维隋发布了新的文献求助10
24秒前
szzz发布了新的文献求助10
24秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998688
求助须知:如何正确求助?哪些是违规求助? 3538149
关于积分的说明 11273517
捐赠科研通 3277099
什么是DOI,文献DOI怎么找? 1807405
邀请新用户注册赠送积分活动 883855
科研通“疑难数据库(出版商)”最低求助积分说明 810070