Multiscale Water Body Extraction in Urban Environments From Satellite Images

像素 阈值 遥感 计算机科学 卫星 图像分辨率 人工智能 先进星载热发射反射辐射计 萃取(化学) 水体 环境科学 模式识别(心理学) 图像(数学) 地质学 数字高程模型 工程类 航空航天工程 化学 环境工程 色谱法
作者
Yanan Zhou,Jiancheng Luo,Zhanfeng Shen,Xiao Hu,Haiping Yang
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:7 (10): 4301-4312 被引量:80
标识
DOI:10.1109/jstars.2014.2360436
摘要

Water is a fundamental element in urban environments, and water body extraction is important for landscape and urban planning. Remote sensing has increasingly been used for water body extraction; however, in urban environments, this kind of approaches is challenging because of the significant within-class spectral variance in water areas and the presence of complex ground features. The objective of this study is to develop an automatic method that could improve water body extraction in urban environments from moderate spatial resolution satellite images. Central to our method is the combined use of multiscale extractions and spectral mixture analysis techniques in adaptive local regions. Specifically, we first calculate the NDWI image from experimental images for selecting water sample pixels. Second, on the basis of the selected water pixels, we apply an improved spectral mixture analysis technique on the experimental image to get water abundance of every pixel, and segment the abundance image to extract water bodies at the global scale. Third, in a similar manner, we iteratively conduct the water body extraction in multiscale local regions to refine the water bodies. Finally, the final result of water bodies is obtained when a stopping criterion is satisfied. We have implemented this method to produce water maps from an ALOS/AVNIR-2 image and a Terra/ASTER image covering urban areas. The experimental results illustrate that the proposed method has substantially outperformed two related methods that use the NDWI-based thresholding and the SVM classification for the entire image.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
Never stall完成签到,获得积分10
1秒前
鱼啦啦完成签到,获得积分10
1秒前
1秒前
猫了个喵完成签到,获得积分10
2秒前
冷静的嫣然完成签到 ,获得积分10
2秒前
2秒前
小值钱完成签到,获得积分10
3秒前
研友_nPPERn发布了新的文献求助10
4秒前
我要瘦发布了新的文献求助10
4秒前
solobang发布了新的文献求助10
4秒前
Sean发布了新的文献求助10
4秒前
Harry完成签到,获得积分10
5秒前
yxy999完成签到,获得积分10
5秒前
年华发布了新的文献求助10
5秒前
WZH123456完成签到,获得积分10
6秒前
orixero应助大胆盼兰采纳,获得10
6秒前
7秒前
7秒前
陈某某完成签到,获得积分10
7秒前
卡皮巴丘完成签到 ,获得积分10
8秒前
周少完成签到,获得积分10
8秒前
陶一二完成签到,获得积分10
10秒前
10秒前
10秒前
DocZhao完成签到 ,获得积分10
11秒前
apt完成签到,获得积分10
11秒前
11秒前
Three完成签到,获得积分10
12秒前
如果多年后完成签到 ,获得积分10
12秒前
SYLH应助solobang采纳,获得10
13秒前
SYLH应助solobang采纳,获得10
13秒前
灰色与青完成签到,获得积分10
13秒前
852应助幸福胡萝卜采纳,获得10
13秒前
虞无声应助年华采纳,获得10
13秒前
14秒前
香菜发布了新的文献求助10
15秒前
hf发布了新的文献求助10
15秒前
17秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678